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Abstract13

In discrete-time linear dynamical systems (LDSs), a linear map is repeatedly applied to an initial14

vector yielding a sequence of vectors called the orbit of the system. A weight function assigning15

weights to the points in the orbit can be used to model quantitative aspects, such as resource16

consumption, of a system modelled by an LDS. This paper addresses the problems to compute the17

mean payoff, the total accumulated weight, and the discounted accumulated weight of the orbit under18

continuous weight functions and polynomial weight functions as a special case. Besides general LDSs,19

the special cases of stochastic LDSs and of LDSs with bounded orbits are considered. Furthermore,20

the problem of deciding whether an energy constraint is satisfied by the weighted orbit, i.e., whether21

the accumulated weight never drops below a given bound, is analysed.22
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1 Introduction26

Dynamical systems describing how the state of a system changes over time constitute a27

prominent modelling paradigm in a wide variety of fields. A discrete-time linear dynamical28

system (LDS) in ambient space Rd starts at some initial point q ∈ Rd. The dynamics of29

the system are given by a linear update function in form of a matrix M ∈ Rd×d that is30

applied to the current state of the system at each time step. This gives rise to the orbit31

(q, Mq, M2q, . . . ). Surprisingly, several seemingly simple decidability questions about the32

orbit of a given LDS have been open for many decades (for an overview, see [11]). For33

example, two prominent problems about linear recurrence sequences, the Positivity Problem34

and the Skolem Problem, are subsumed by the following problem: given (M, q) and a target35

set H, decide whether there exists n ∈ N such that Mnq ∈ H.36

Investigation of algorithmic problems concerning LDSs is a lively area of research in37

computer science. In order to verify that a system modelled as an LDS satisfies desirable38

properties, typical formal verification problems such as model-checking problems asking39

whether the orbit of an LDSs satisfies certain temporal properties have been studied [3, 12].40

One important special case of LDSs are stochastic LDSs. For a finite-state Markov chain, the41

sequence of distributions over the state space naturally forms an LDS: The initial distribution42

can be written as a vector ιinit ∈ [0, 1]d. Afterwards, the transition probability matrix P can43

be repeatedly applied to obtain the distribution P kιinit over states after k steps. In contrast44
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Table 1 Overview of the results.

LDS type weight function algorithmic results

mean payoff arbitrary polynomial computable (Thm. 7)
bounded orbit continuous integral representation computable (Thm. 11)
stochastic, irreducible continuous computable with polynomial many

evaluations of the weight function.
(Thm. 13)

stochastic, reducible continuous computable with exponentially many
evaluations of the weight function.

(Thm. 14)

total/discounted weight arbitrary polynomial computable (Thm. 15)

satisfaction of energy
constraints

arbitrary polynomial decidable in dimension 3 (Thm. 21)
stochastic linear Positivity-hard (Thm. 22)

to the path semantics where a probability measure over infinite paths in a Markov chain is45

defined, the view of a Markov chain as an LDS is also called the distribution transformer46

semantics of Markov chains. In this way, LDSs also play an important role in the analysis of47

probabilistic systems.48

In this paper, we address quantitative verification questions arising when systems are49

equipped with a weight function. Such a weight function assigns a weight to each state of the50

system that can be used to model various quantitative aspects of a system, such as resource51

or energy consumption, rewards or utilities, or execution time for example. To this end, we52

consider a weight function w : Rd → R assigning a weight to each state in the ambient space53

and obtain a sequence of weights of the states in the orbit (w(q), w(Mq), w(M2q), . . . ). The54

goal of this paper is to provide algorithmic answers to the following typical questions arising55

for weighted systems:56

a) What is the mean payoff, i.e., the average weight collected per step?57

b) What is the total accumulated weight of the orbit and what is the so-called discounted58

accumulated weight, where weights obtained after k time steps are discounted with a59

factor λk for a given λ ∈ (0, 1)?60

c) Is there an n ∈ N such that the sum of weights obtained in the first n steps lies below a61

given bound? This problem is referred to as satisfaction of an energy-constraint because62

it corresponds to determining whether a system ever runs out of energy when weights63

model the energy used or gained during a step.64

▶ Example 1. Assume a scheduler assigns tasks to d different processors P1, . . . , Pd and that65

the load of the processors at different time steps can be modeled as an LDS with matrix66

M ∈ Qd×d and orbit (Mkq)k∈N for a q ∈ Qd. Further, assume for each processor Pi there is67

an optimal load µi under which it works most efficiently. To evaluate the scheduler, we want68

to know how closely the real loads in the long-run match the ideal loads. As a measure for69

how well a vector x matches the vector µ of ideal loads, we use the average squared distance70

δµ(x) = 1
d

d∑
i=1

(xi − µi)2.71

To see how well the scheduler manages to get close to optimal loads in the long-run after72

a possible intialization phase, we consider the mean payoff of the orbit with respect to the73

weight function δµ, i.e.,74

lim
ℓ→∞

1
ℓ + 1

ℓ∑
k=0

δµ(Mkq).75

If, on the other hand, we know that the orbit will tend to the optimal loads for k → ∞, we76
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might instead also want to measure the total deviation
∑∞

k=0 δµ(Mkq). If this value is small,77

the orbit converges to the optimal loads rather quickly without large deviations initially.78

Contribution.79

We address the problems mentioned above for weighted LDS with rational entries under80

continuous weight functions. For a general LDS and an arbitrary continuous weight function,81

not much can be said. We either have to restrict the class of LDSs or the class of weight82

functions in order to be able to address computational problems. Our contributions are as83

follows. An overview of the results can also be found in Table 1.84

a) Mean payoff: For rational LDSs equipped with a polynomial weight function, we show that85

it is decidable whether the mean payoff exists, in which case it is rational and computable.86

We then show how to decide whether the orbit of a rational LDS is bounded. If the orbit87

of a rational LDS is bounded, we show how to compute the set of accumulation points88

of the orbit and prove that the mean payoff of the orbit can be expressed as an integral89

of the weight function over a computable parametrisation of this set. We next consider90

stochastic LDSs, which constitute a special case of LDSs with bounded orbits. We show91

that in case the transition matrix is irreducible, then one can compute polynomially many92

rational points in polynomial time such that the mean payoff is the arithmetic mean of93

the weight function evaluated at these points. In the reducible case, on the other hand,94

exponentially many such rational points have to be computed.95

b) Total and discounted accumulated weights: For rational LDSs and polynomial weight96

functions, we prove that the total as well as the discounted accumulated weight of the97

orbit is computable and rational if finite.98

c) Satisfaction of energy constraints: First we prove that it is decidable whether an energy99

constraint is satisfied by an orbit under a polynomial weight function for LDS of dimension100

d = 3. On the other hand, we show that the problem is at least as hard as the Positivity101

problem for linear recurrence sequences already for stochastic LDSs and linear weight102

functions. The decidability status of the Positivity Problem is open. In fact, a decidability103

result would amount to a major breakthrough in Diophantine approximation.104

Related work.105

Verification problems for linear dynamical systems have been extensively studied for decades,106

starting with the question about the decidability of the Skolem [21, 23] and Positivity107

[19, 20] problems, which are special cases of the reachability problem for LDSs, at low orders.108

Decidable cases of the more general Model-Checking Problem for LDSs have been studied in109

[3, 12]. In addition, decidability results for parametric LDSs [4] as well as various notions of110

robust verification [2, 8] have been obtained. See [11] for a survey of what is decidable about111

discrete-time linear dynamical systems. Recently, Kelmendi has shown [15] that the natural112

density (which is a notion of frequency) of visits of an LDS in a semialgebraic set always113

exists and is computable to arbitrary precision.114

When it comes to Markov chains viewed as LDSs under the distribution transformer115

semantics, it is known that Skolem and Positivity-hardness results for general LDS persist [1].116

Vahanwala has recently shown [22] that this is the case even for ergodic Markov chains.117

2 Preliminaries118

We briefly present our notation and introduce the concepts used in the subsequent sections.119
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2.1 Linear dynamical systems120

A (discrete-time) linear dynamical system (LDS) (M, q) of dimension d > 0 consists of an121

update matrix M ∈ Rd×d and an initial vector q ∈ Rd. The orbit O(M, q) of (M, q) is the122

sequence (Mkq)k∈N. We say that the orbit of (M, q) is bounded if there exists c ∈ R such123

that |Mkq| < c for all k ∈ N. An LDS is called stochastic if the matrix M and the initial124

vector q have only non-negative entries and the entries of each column of M as well as the125

entries of q sum up to 1. In this case we refer to the matrix M as stochastic too.1126

2.2 Algebraic numbers127

A number α ∈ C is algebraic if there exists a polynomial p ∈ Q[x] such that p(α) = 0.128

Algebraic numbers form a subfield of C denoted by Q. The minimal polynomial of α ∈ Q129

is the (unique) monic polynomial p ∈ Q[X] of the smallest degree such that p(α) = 0. The130

degree of α, denoted by deg(α), is the degree of the minimal polynomial of α. For each131

α ∈ Q there exists a unique polynomial Pα =
∑d

i=0 aix
i ∈ Z[x] with d = deg(α), called the132

defining polynomial of α, such that Pα(α) = 0 and gcd(a0, . . . , ad) = 1. The polynomial Pα133

and the minimal polynomial of α have identical roots, and are square-free, i.e., all of their134

roots appear with multiplicity one. The (naive) height of α, denoted by H(α), is equal to135

max0≤i≤d |ai|. We represent an algebraic number α in computer memory by its defining136

polynomial Pα and sufficiently precise rational approximations of Re(α), Im(α) to distinguish137

α from other roots of Pα. We denote by ||α|| the bit length of a representation of α ∈ Q.138

We can perform arithmetic effectively on algebraic numbers represented in this way139

2.3 Linear recurrence sequences140

A sequence (un)n∈N is a linear recurrence sequence over a ring R ⊆ C if there exists a positive141

integer d and a recurrence relation (a0, . . . , ad−1) ∈ Rd such that un+d =
∑d−1

i=0 aiun+i for142

all n ∈ N. The order of (un)n∈N is the smallest positive integer d such that (un)n∈N satisfies143

a recurrence relation in Rd. We will mostly work with sequences over Q. Examples of144

rational LRS include the Fibonacci sequence, un = p(n) for p ∈ Q[x], and un = cos(nθ)145

where θ ∈ {arg(λ) : λ ∈ Q(i)}. We refer the reader to the books by Everest et al. [9] and146

Kauers & Paule [14] for a detailed discussion of linear recurrence sequences.147

Let (un)n∈N be a non-zero LRS given by the (minimal) recurrence relation un+d =148 ∑d−1
i=0 aiun+i. Writing A =

[
a1 · · · ad−1

]
and q =

[
u0 · · · ud−1

]⊤, the matrix149

C :=
[

0 Id−1
a0 A

]
=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
a0 a1 · · · ad−1

 ∈ Rd×d
150

is called the companion matrix of (un)n∈N. We have that Cnq =
[
un · · · un−d+1

]⊤ and151

un = e1Cns for all n ∈ N, where ei denotes the ith standard basis vector. Note that as152

a0 ̸= 0, the matrix C is invertible and does not have zero as an eigenvalue.153

The characteristic polynomial of (un)n∈N is given by p(x) = xd −
∑d−1

i=0 aix
i. Note that p154

is identical to the characteristic polynomial det(xI − C) of the companion matrix C. The155

1 Note that – in order to keep the notation in line with the notation for general LDSs – we deviate from
the standard convention that rows of stochastic matrices sum up to 1 and that stochastic matrices are
applied to distributions by multiplication from the right.



R. Aghamov, C. Baier, T. Karimov, J. Ouaknine, J. Piribauer XX:5

eigenvalues (also called the roots) of (un)n∈N are the d (possibly non-distinct) roots λ1, . . . , λd156

of the characteristic polynomial p. An LRS is157

simple (or diagonalisable) if its characteristic polynomial does not have a repeated root,158

non-degenerate if (i) all real eigenvalues are non-negative, and (ii) for every pair of distinct159

eigenvalues λ1, λ2, the ratio λ1/λ2 is not a root of unity.160

For each LRS (un)n∈N there exists effectively computable L such that the sequences (u(k)
n )n∈N161

for 0 ≤ k < L defined by u
(k)
n = nL + k are all non-degenerate [9, Section 1.1.9]. Finally, if162

(un)n∈N, (vn)n∈N are LRS over a field R, and ◦ ∈ {+, −, ·}, then wn = un ◦ vn also defines163

an LRS [14, Theorem 4.2] over R. Moreover, if (un)n∈N and (vn)n∈N are both simple, then164

so is (wn)n∈N.165

The exponential polynomial representation of an LRS166

Every LRS (un)n∈N of order d > 0 over Q can be written in the form [9, Chapter 1]167

un =
m∑

j=1
pj(n)λn

j (1)168

where m ≥ 1 if (un)n∈N is not identically zero, λ1, . . . , λm are the distinct non-zero eigenvalues169

of (un)n∈N, and each pi is a non-zero polynomial with algebraic coefficients. With these170

conditions, we say that the right-hand side is in the exponential polynomial form. The171

following two lemmas about exponential polynomial solutions of LRS are folklore. For172

completeness, we give the proofs in Appendix A.173

▶ Lemma 2. Let un =
∑m

i=1 pi(n)λn
i , where all λi ∈ Q and pi ∈ Q[x] are non-zero, and174

λi ̸= λj for i ̸= j. The sequence (un)n∈N is not identically zero. Specifically, there exists175

0 ≤ n < d, where d =
∑m

i=1(deg(pi) + 1), such that un ̸= 0.176

▶ Lemma 3. Let (un)n∈N be as in the statement of Lemma 2. If un ∈ R for all n ∈ N, then177

for every 1 ≤ i ≤ m there exists j such that pj(n) = pi(n) and λj = λi.178

Throughout this work we will consider sequences of the form un = p(Mnq) where p179

is a polynomial with rational coefficients. Since p(Mnq) = p(e1Mnq, . . . , edMnq), each180

u
(k)
N = ekMnq is an LRS over Q (this can be seen, e.g., by applying the Cayley-Hamilton181

theorem), and LRS over Q are closed under addition and multiplication, the sequence182

(p(Mnq))n∈N is itself an LRS over Q.183

Decision problems about LRS184

Sign patterns of LRS have been studied for a long time. Two prominent open problems in185

this area are the Skolem Problem and the Positivity Problem. The Skolem Problem is to find186

an algorithm that, given an LRS un, decides if the set Z = {n : un = 0} is non-empty. The187

most well-known result in this direction is the celebrated Skolem-Mahler-Lech theorem, which188

(non-constructively) shows that Z is semilinear. In particular, it shows that a non-degenerate189

(un)n∈N can have only finitely many zeros. The Positivity Problem, on the other hand, asks190

to find an algorithm that determines if un ≥ 0 for all n.191

2.4 Markov Chains.192

A finite-state discrete-time Markov chain (DTMC) M is a tuple (S, P, ιinit), where S is193

a finite set of states, P : S × S → [0, 1] is the transition probability function where we194

require
∑

s′∈S Pss′ = 1 for all s ∈ S and iinit : S → [0, 1] is the initial distribution, such195

that
∑

s∈S iinit(s) = 1. For algorithmic problems, all transition probabilities are assumed196
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to be rational. A finite path ρ in M is a finite sequence s0s1 . . . sn of states such that197

P (si, si+1) > 0 for all 0 ≤ i ≤ n − 1. We say that a state s is reachable from t if there is198

a finite path from s to t. If all states are reachable from all other states, we say that M199

is irreducible; otherwise, we say it is reducible. A set B ⊆ S of states is called a bottom200

strongly connected component (BSCC) if it is strongly connected, i.e., all states in B are201

reachable form all other states in B and if there are no outgoing transitions, i.e., P (s, t) > 0202

and s ∈ B implies t ∈ B.203

W.l.o.g., we identify S with {1, . . . , d} for d = |S|. Then, overloading notation, we204

consider P ∈ Rd×d as a matrix with Pij = P (j, i) for i, j ≤ d.2 Likewise, we consider ιinit205

to be a (column3) vector in Rd with (ιinit)i = ιinit(i) for i ≤ d. Then, the sequence of206

distributions over states after k steps is given by P kιinit , which forms a stochastic LDS. We207

also write P
(k)
ij for (P k)ij , which is the probability to move from state j to i in exactly k208

steps. Further, we say that the matrix P is irreducible if the underlying Markov chain is209

irreducible. The period di of a state i is given by: di = gcd{m ≥ 1 : P
(m)
ii > 0}. If di = 1,210

then we call the state i aperiodic. A Markov chain (and its matrix) are aperiodic if and only211

if all its states are aperiodic. The period of a Markov chain M as well as of its transition212

probability matrix P is the least common multiple of the periods of the states of M .213

A vector π ∈ Rd is called a stationary distribution of the Markov chain if: a) π is a214

distribution, i.e., πj ≥ 0 for all j with 1 ≤ j ≤ d, and
∑d

j=1 πj = 1; b) π is stationary, i.e.,215

π = Pπ, which is to say that πi =
∑

i∈S Pijπj for all j ∈ S. For aperiodic Markov chains, it216

is known that the sequence of distributions over states (P kιinit)k∈N converges to a stationary217

distribution π, which can be computed in polynomial time (see [16, 5]).218

3 Mean payoff219

In this section, we address the computation of the mean payoff of an orbit. The mean payoff220

is the average weight collected per step in the long-run. For an LDS given by M ∈ Qd×d and221

q ∈ Qd and a weight function w : Rd → R, we define the mean payoff of the orbit as222

MPw(M, q) := lim
k→∞

1
k + 1

k∑
i=0

w(M iq).223

In the sequel, we address the problem of computing the mean payoff of the orbit of an224

LDS with respect to continuous weight functions. For general LDSs, there is not much we225

can say without knowing more about the form of the weight function. Hence, we have to226

restrict either the class of weight functions or the class of LDSs. In Section 3.1 we address227

the problem for polynomial weight functions. In Sections 3.2 and 3.3 we consider continuous228

weight functions on two classes of systems: LDSs with bounded orbit and stochastic LDSs.229

3.1 Polynomial weight-functions230

In order to compute the mean payoff of the orbit of an LDS (M, q) with respect to a231

polynomial weight function p, we first recall that the sequence (p(Mnq))n∈N is an LRS. The232

following lemma states that the sequence of partial sums of the weights is also an LRS.233

2 This is the transpose of the transition matrix usually defined so that we are in line with our notation
for LDSs.

3 Also here, usually, this is defined as a row vector.
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▶ Lemma 4. Let (M, q) be an LDS with M ∈ Qd×d and q ∈ Qd, and let p ∈ Q[X1, . . . , Xd]234

be a polynomial weight function with rational coefficients. The sequence235

un =
n∑

i=0
p(M iq)236

is a rational LRS.237

Proof. As discussed in subsection 2.3, wn = p(M iq) is a rational LRS. Suppose (wn)n∈N238

satisfies a recurrence relation wn+k = a0wn + . . . + ak−1wn+k01, where a0, . . . , ak−1 ∈ Q.239

Then un+k+1 = un+k + ak−1(wn+k − wn+k−1) + . . . + a0(wn+1 − wn). Hence (un)n∈N itself240

is an LRS of order at most k + 1. ◀241

Computing MPw(M, q) hence boils down to determining whether the limit limn→∞ un/n242

exists for an LRS (un)n∈N and computing the limit in case it exists.243

▶ Theorem 5. Let (un)n∈N be an LRS over Q. It is decidable whether limn→∞ un/n exists,244

in which case the limit is rational and effectively computable.245

The proof can be found in the appendix. Its main ideas are as follows. By a fundamental246

result, |un| for an LRS (un)n∈N essentially grows at the rate ρn, where ρ > 0 is the largest247

magnitude of an eigenvalue. If ρ = 1, then the sequence (un)n∈N exhibits a recurring248

behaviour, which is also well-understood. Hence limn→∞ un exists only in rather specific249

situations. The sequence (un/n)n∈N, in this context, almost behaves like an LRS. Hence250

similar arguments are applicable.251

An immediate corollary that will be useful again in Section 4 is the following.252

▶ Corollary 6. For a rational LRS (un)n∈N, it is decidable whether limn→∞ un exists, in253

which case the limit is rational and effectively computable.254

Proof. Observe that limn→∞ un = limn→∞ vn/n, where vn = nun is a rational LRS. ◀255

Furthermore, Theorem 5 puts us into the position to prove the first main result on the256

computation of the mean payoff:257

▶ Theorem 7. Let (M, q) be an LDS with M ∈ Qd×d and q ∈ Qn and let p ∈ Q[X1, . . . , Xd]258

be a polynomial weight function with rational coefficients. Then, it is decidable whether the259

mean payoff260

MPp(M, q) = lim
k→∞

1
k + 1

k∑
i=0

p(M iq)261

exists and, in which case it is rational and computable.262

Proof. Immediate by Theorem 5 and Lemma 4. ◀263

3.2 Bounded LDSs264

If the orbit of an LDS is bounded, we can get our hands on the mean payoff with respect to265

a continuous weight function. We exploit that the orbit of an LDS approaches a limiting266

shape – which is the set of accumulation points of the orbit – closer and closer in this case.267

This allows us to express the mean payoff in terms of an integral of the weight function over268

this limiting shape. This integral computes the “average” value of the weight function on the269

limiting shape. Of course, we have to carefully ensure that we also know how “frequently”270

the orbit approaches different parts of the limiting shape. Let us illustrate this idea first:271
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▶ Example 8. Let w : R3 → R be a continuous weight function and consider the LDS272

M =

 3/5 4/5 0
−4/5 3/5 0

0 0 1/2

 and q =

1
0
1

 .273

Looking only at the first two coordinates a rotation is repeatedly applied in this LDS. In274

the complex plane, this rotation is given by multiplication with 3/5 − 4/5i. As 3/5 − 4/5i is275

not a root of unity, the orbit never reaches a point with (1, 0) in the first two coordinates276

again. In fact, the first two components of the orbit are dense in the unit circle. Furthermore,277

these components visit each interval of the same length on the circle with the same frequency.278

The third component is halved at every step and converges to 0. As the weight function279

is continuous, we can hence treat the third coordinate as equal to 0 when determining the280

mean payoff. So, the set of accumulation points of the orbit is L = {v ∈ R3 | v3 = 0, |v| = 1},281

which we can parametrise via T : [0, 1) → R3 with T : α 7→
[
cos(2πα) sin(2πα) 0

]⊤. As282

this parametrisation moves through the circle with constant speed reflecting the fact that283

the orbit is “equally distributed” over the circle in the first two components, we can now284

express the mean payoff of the orbit with respect to the weight function w as285

MPw(M, q) =
∫ 1

0
w
([

cos(2πα) sin(2πα) 0
]⊤) dα.286

In the sequel, we work out all the necessary steps to check whether the orbit of an LDS287

is bounded and to obtain such an expression for the mean payoff as an integral for arbitrary288

rational LDSs with bounded orbit.289

Jordan normal form and boundedness of the orbit290

Throughout this section, fix a matrix M ∈ Qd×d, an initial vector q ∈ Qd, and a continuous291

weight function w : Rd → R. We first transform the matrix M into Jordan normal form by292

computing matrices J and B as well as the inverse B−1 with algebraic entries such that293

M = B · J · B−1
294

where J is in Jordan form with the eigenvalues of M on the diagonal and B is an invertible295

matrix with generalized eigenvectors of M as columns in polynomial time [7]. Since296

multiplication with B is a linear bijection, (Mk · q)k∈N is bounded if and only if the sequence297

(Jk · (B−1q))k∈N is bounded. To check whether this is the case, we first simplify the sequence.298

We use the notation Jα,ℓ to denote a Jordan block of size ℓ with α on the diagonal.299

Observe that multiplying a Jordan block to a vector q = [q1, . . . , qk, 0, . . . , 0, ]⊤ in which the300

last ℓ − k components are 0 results in a vector where this is still the case:301

Jα,ℓ · q =



α 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . α 1 0
...

. . . α 1
0 . . . . . . 0 α


·



q1
. . .

qk

0
. . .

0


=


Jα,k ·

 q1
. . .

qk


0

. . .

0


302

Looking at the initial vector B−1q, this allows us to simplify the LDS by determining the303

coordinates at which the orbit (JkB−1q)k∈N always stays 0. Suppose the Jordan blocks in J304

end at coordinates i1, . . . , im, respectively, with 1 ≤ i1 < i2 < im = d. Now, let305

I = {i ∈ {1, . . . , d} | for some index h, all j with i ≤ j ≤ ih satisfy (B−1q)j = 0}.306

So, I contains only dimensions j such that (Jk(B−1q))j = 0 for all k. We now set all columns307
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and rows of J with an index in I to 0. This does not affect the orbit (BJkB−1q)k∈N. After308

this simplification, the following condition, which we can assume w.l.o.g., is satisfied.309

▶ Assumption 1. The LDS given by M ∈ Qd×d and q ∈ Qd has the following property: For310

the Jordan normal form M = B · J · B−1 of M and v
def= B−1q, we have that vi ≠ 0 for any311

coordinate 1 ≤ i ≤ d at which a non-zero Jordan block of J ends.312

▶ Proposition 9. Under Assumption 1, the orbit (Jkq)k∈N is bounded if and only if all313

eigenvalues on the diagonal of J have modulus at most 1 and the Jordan blocks in J with an314

eigenvalue α with |α| = 1 have size 1.315

We delegate the proof to the appendix. Proposition 9 allows us to decide whether the316

orbit of the LDS given by M and v is bounded. From now on, we assume that it is bounded.317

We now further simplify the LDS by removing all eigenvalues with modulus less than 1: For318

a Jordan block Jα,ℓ with |α| < 1, we know Jα,ℓ → 0 for k → ∞. As we apply the function B319

viewed as a linear map and the continuous function w to the points in the orbit and as the320

mean payoff does not depend on a prefix of the orbit, we can set all such Jordan blocks to 0321

without affecting the mean payoff. So, w.l.o.g. we can work under the following assumption322

after this simplification because the Jordan blocks with eigenvalues with modulus 1 have size323

1 in the light of Proposition 9:324

▶ Assumption 2. The matrix M of the rational LDS (M, q) is diagonalisable and all non-zero325

eigenvalues have modulus 1. So, there is a computable algebraic matrix B with computable326

inverse B−1 and a computable algebraic diagonal matrix D whose entries all have modulus 1327

or 0 with M = B · D · B−1.328

Multiplicative relations between the eigenvalues329

Before we can parametrise the set of accumulation points of the orbit, we have to detect330

multiplicative relations between the elements on the diagonal of D. Before defining (the331

group of) multiplicative relations, let us illustrate this concept in an example:332

▶ Example 10. Consider the matrix D =
[
λ 0
0 λ̄

]
for an algebraic number λ with |λ| = 1333

that is not a root of unity. Then, λ · λ̄ = 1 is a multiplicative relation between λ and λ̄.334

Further, (λk)k∈N is dense in the torus T := {x ∈ C | |x| = 1}. Now, the sequence
(
λk, λ̄k

)
k∈N335

is dense in L := {(x, y) ∈ T2 | x · y = 1}, but not in T2. So, for an initial vector v, the set of336

accumulation points of (Dkv)k∈N is L · v and not T2 · v.337

We follow an approach also taken in [15] to detect multiplicative relations between the338

algebraic numbers λ1, . . . , λd ∈ Q. We work under Assumption 2 and we first reorder the339

coordinates such that the entries on the diagonal of D are λ1, . . . , λℓ, λℓ+1, . . . , λd where λi340

is not 0 or 1 for i ≤ ℓ and the entries λj with j > ℓ are all equal to 0 or 1. The group341

G := G(λ1, . . . , λℓ) = {(m1, . . . , mℓ) ∈ Zℓ λm1
1 · · · λmℓ

ℓ = 1}342

is called the group of multiplicative relations between λ1, . . . , λℓ. If this group is consists343

only of the neutral element, we say that λ1, . . . , λℓ are multiplicatively independent.344

Note that G is a free abelian group, and has a basis of at most ℓ elements from Zℓ.345

By a deep result of Masser [17], G has a basis B such that for each v ∈ B, ||v||∞ <346

p(||λ1|| + . . . + ||λℓ||)ℓ, where p is an absolute polynomial. Hence a basis of G can be347

computed in polynomial space (given λ1, . . . , λℓ) by simply enumerating all possible bases348
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satisfying Masser’s bound. As described in detail in [15], each element (b1, . . . , bℓ) ∈ B of349

the basis allows us to express one of the eigenvalues in terms of the others: Suppose bj ̸= 0.350

Then, the equation λb1
1 · · · λbℓ

ℓ = 1, allows us to conclude351

λ
bj

j =
∏
i ̸=j

λ−bi
i and hence λj = ρj

∏
i ̸=j

λ
−bi/bj

i352

where ρj is a bjth root of unity. Applying this procedure consecutively to all elements of the353

basis B, we can divide and reorder the eigenvalues λ1, . . . , λℓ as λ1, . . . , λm, λm+1, . . . , λℓ such354

that λ1, . . . , λm are multiplicatively independent and such that each λj with m + 1 ≤ j ≤ ℓ355

is not 1 and can be written as356

λj = ρj ·
m∏

i=1
λ

qj,i

i357

where ρj is a root of unity and qj,i ∈ Q for 1 ≤ i ≤ m.358

Subsequences without periodicity359

The fact that expression for the eigenvalues λj with m + 1 ≤ j ≤ ℓ contains the bjth root of360

unity ρj introduces a periodic behavior to the sequence (λk
j )k∈N. In order to eliminate this361

periodic behavior, we divide the orbit into subsequences as follows: We let P be the least362

common multiple of the values bj for m + 1 ≤ j ≤ ℓ. As ρj is a bjth root of unity, ρP
j = 1 for363

all j with m + 1 ≤ j ≤ ℓ. We now split the sequence (Dk)k∈N into the P subsequences of the364

form (DP k+r)k∈N for r ∈ {0, . . . , P − 1}. The diagonal entries of DkP are365

λP k
1 , . . . , λP k

m ,

m∏
i=1

(λP k
i )qm+1,i , . . . ,

m∏
i=1

(λP k
i )qℓ,i , λℓ+1, . . . , λd.366

Recall here that λℓ+1, . . . , λd are all 0 or 1.367

We can now express any point in the orbit BDP k+rB−1q in terms of λk
1 , . . . , λk

m and Dr.368

To this end, we define the map369

Tr : Tm →Rd
370

(µ1, . . . , µm) 7→BDr diag
(

µP
1 , . . . , µP

m,

m∏
i=1

(µP
i )qm+1,i , . . . ,

m∏
i=1

(µP
i )qm+1,i , λℓ+1, . . . , λd

)
B−1q371

372

where diag(x1, . . . , xd) denotes a diagonal matrix with entries x1, . . . , xd on the diagonal.373

The map T is chosen such that374

Tr(λk
1 , . . . , λk

m) = BDP k+rB−1q.375

This is also the reason why Tr maps into Rd.376

Parametrising the set of accumulation points377

For a real x, we define x mod 1 := x − ⌊x⌋. For 1 ≤ j ≤ m, we define the number378

αj ∈ [0, 1) as the unique number with λj = e2πiαj . Let S : [0, 1)m → Tm (recall that379

T := {x ∈ C | |x| = 1}) be the map380

(β1, . . . , βm) 7→ (e2πiβ1 , . . . , e2πiβm).381
382

So, we get (λk
1 , . . . , λk

m) = S(kα1 mod 1, . . . , kαm mod 1) and hence383

BDP k+rB−1q = Tr(S(kα1 mod 1, . . . , kαm mod 1)).384

Following the exposition in [15], we can now apply an equidistribution theorem by385

Weyl [24]. First, observe that the fact that λ1, . . . , λm are multiplicatively independent386

means that the values 1, α1, . . . , αm are linearly independent over Q: If there were a non-zero387
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vector c0, c1, . . . , cm with c0 +
∑m

j=1 cjαj = 0, this vector would witnesses a multiplicative388

relation between λ1, . . . , λm. In [24], it is now shown that for any measurable set U ⊆ [0, 1)m,389

we have390

lim
n→∞

|{0 ≤ k ≤ n | (kα1 mod 1, . . . , kαm mod 1) ∈ U}|
n + 1 = L(U) (∗)391

where L is the Lebesgue measure. For more details, we also refer to the exposition of this392

argument in [15].393

This means that the sequence of arguments ((kα1 mod 1, . . . , kαm mod 1))k∈N is dense394

and “equally distributed” in the cube [0, 1)m, and hence the sequence ((λk
1 , . . . , λk

m))k∈N is395

dense and “equally distributed” in the m-dimensional torus Tm where “equally distributed”396

means that every subset of the same size is hit equally often in the sense of Equation (∗).397

Mean payoff as integral398

Now, we are in the position to prove the main result of this subsection: The mean payoff of399

a bounded orbit wrt a continuous weight function can be expressed as an integral.400

▶ Theorem 11. Let M ∈ Qd×d be a matrix and q ∈ Qd an initial vector satisfying Assumption401

2. Let w : Rd → R be a continuous weight function. Let P ∈ N and Tr : Tm → Rd for r < P ,402

and S : [0, 1)m → Tm be as above. Then, for each r with 0 ≤ r < P , the mean payoff of the403

sub-orbit (MkP +rq)k∈N wrt w exists and can be expressed as404

MPw(MP , Mrq) = lim
k→∞

1
k + 1

k∑
i=0

w(MkP +rq) =
∫

[0,1)m

w ◦ Tr ◦ S dL405

where L is the Lebesgue measure on [0, 1)m. The mean payoff of the original orbit is then the406

arithmetic mean407

MPw(M, q) =
∑P −1

r=0 MPw(MP , Mrq)
P

.408

Proof. Let α1, . . . , αm ∈ [0, 1) be such that λj = e2πiαj as above. For r < P , we have409

constructed S and Tr such that410

MkP +rq = Tr(S(kα1 mod 1, . . . , kαm mod 1))411

for all k. As w is continuous, it can be written as sum of Lebesgue measurable step functions412

w =
∑∞

j=0 fj · 1Aj where, for all j, the coefficient fj is in R, the set Aj ⊆ Rd is measurable,413

and 1Aj
is 1 on points in Aj and 0 otherwise. For 1Aj

, we now observe414

lim
k→∞

1
k + 1

k∑
i=0

1Aj
(MkP +rq) = lim

k→∞

1
k + 1

k∑
i=0

1Aj
(Tr(S(kα1 mod 1, . . . , kαm mod 1)))415

= lim
k→∞

|{i ≤ k | Tr(S(iα1 mod 1, . . . , iαm mod 1)) ∈ Aj}|
k + 1 = L((Tr ◦ S)−1(Aj))416

417

where the last equality follows from equation (∗) that is stated above and shown in [24]. But,418

we also have419 ∫
[0,1)m

1Aj ◦ Tr ◦ S dL = L((Tr ◦ S)−1(Aj)).420
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Putting this together, we obtain421

MPw(MP , Mrq) = lim
k→∞

1
k + 1

k∑
i=0

w(MkP +rq) =
∞∑

j=0
fj · lim

k→∞

1
k + 1

k∑
i=0

1Aj (MkP +rq)422

=
∞∑

j=0
fj ·

∫
[0,1)m

1Aj ◦ Tr ◦ S dL =
∫

[0,1)m

w ◦ Tr ◦ S dL.423

424

This finishes the proof of the first claim. The claim that the mean payoff MPw(M, q) can425

now be expressed as the arithmetic mean is obvious. ◀426

3.3 Stochastic LDSs427

Stochastic LDSs are a special case of LDSs with a bounded orbit. In this section, we will428

show that in the case of stochastic LDSs, we can compute the mean payoff of the orbit under429

a continuous weight function by evaluating the weight function on finitely many points. In430

the aperiodic case, the orbit even converges to a single point so that it suffices to evaluate431

the weight function once:432

▶ Lemma 12. Let P ∈ Qd×d be a stochastic, aperiodic matrix and ιinit ∈ Qd an initial433

distribution. Furthermore, let w : Rd → R be a continuous weight function. Then,434

MPw(P, ιinit) = w(π)435

where π is a stationary distribution of P computable in polynomial time.436

Proof. As described in Section 2.4, we know that the orbit (P kιinit)k∈N converges to a437

stationary distribution π in this case, which can be computed in polynomial time [16, 5].438

So, limk→∞ P kιinit exists and, as w is continuous, we know limk→∞ w(P kιinit) = w(π). It is439

straightforward to observe that440

MPw(P, ιinit)
def= lim

k→∞

1
k + 1

k∑
i=0

w(P iιinit) = w( lim
k→∞

P kιinit) = w(π). ◀441

Hence the computation of the mean payoff boils down to evaluating the function w once on442

a rational point computable in polynomial time in this case. We next address the periodic443

case by splitting up the orbit into subsequences.444

For an irreducible and periodic Markov chain with period L, we have that P L is aperiodic445

and L ≤ d by [18, Theorem 1.8.4]. Together with Lemma 12, this allows us to compute446

MPw(P L, P rιinit), which is the mean payoff of (P Lk+rιinit)k∈N. We conclude447

MPw(P, ιinit) = 1
L

L−1∑
r=0

MPw(P, P rιinit).448

So, for irreducible stochastic LDSs, we can divide (P Lk+rιinit)k∈N into L equally spaced449

subsequences and compute the mean payoff MPw(P, ιinit) as the arithemetic mean of the450

mean payoffs of these subsequences.451

▶ Theorem 13. Let P ∈ Qd×d be a stochastic, irreducible matrix and ιinit ∈ Qd an initial452

distribution. Let w : Rd → R be a continuous weight function. Then, we can compute453

points π0, . . . , πL−1 ∈ Qd in polynomial time for some L ≤ d such that MPw(P, ιinit) =454

1
L

∑L−1
i=0 w(πi).455

If the weight function w can be evaluated in polynomial time on rational inputs, Theorem 13456

implies that the mean payoff MPw(P, ιinit) can be computed in polynomial time.457
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When a Markov chain is reducible, the states can be renamed in a way such that, the458

matrix representation of the Markov chain will contain distinct blocks corresponding to459

the bottom strongly connected components (BSCCs) on the diagonal along with additional460

columns at the right representing states that do not belong to any BSCC:461 
□ 0...0 0...0 ∗ ∗

0...0 □ 0...0 ∗ ∗

0...0 0...0 □ ∗ ∗

0...0 0...0 0....0 ∗ ∗


462

Each block representing a BSCC constitutes an irreducible Markov chain. Assume we have k463

blocks with periods L1, L2, ..., Lk correspondingly. Let l be the least common multiple of464

the periods. Now we will have l subsequences of the orbit each of which will converge. The465

convergence of the rows in the bottom is a result of the fact that Markov chain will enter a466

BSCC with probability 1. So, in general, we have l subsequences of the orbit, all of which467

converge. We observe that l ≤ dd, from which the following result follows:468

▶ Theorem 14. Let P ∈ Qd×d be a stochastic matrix and ιinit ∈ Qd an initial distribution. Let469

w : Rn → R be a continuous weight function. Then, we can compute points π0, . . . , πl−1 ∈ Qd
470

in exponential time for some l ≤ dd such that MPw(P, ιinit) = 1
L

∑L−1
i=0 w(πi).471

4 Total (discounted) reward and satisfaction of energy constraints472

In this section, again let M ∈ Qd be a matrix, q ∈ Qd be an initial vector, and w : Rd → R473

be a polynomial weight function with rational coefficients. We define the total reward as474

tr(M, q, w) :=
∞∑

k=0
w(Mkq).475

Likewise, for a rational discount factor δ ∈ (0, 1) we define the total discounted reward as476

dr(M, q, w, δ) :=
∞∑

k=0
δkw(Mkq).477

Both of these quantities, when they exist, can be determined effectively.478

▶ Theorem 15. It is decidable whether the series
∑∞

k=0 w(Mkq) and
∑∞

k=0 δkw(Mkq)479

converge, in which case their value is rational and can be computed.480

Proof. Let un =
∑n

k=0 w(Mkq). As discussed in subsection 3.1, (un)n∈N is a rational LRS,481

and we can apply Corollary 6. Similarly, let vn =
∑∞

k=0 δkw(Mkq). As (δn)n∈N is itself a482

(rational) LRS and such LRS are closed under pointwise multiplication, vn is also a rational483

LRS. We again apply Corollary 6. ◀484

We next discuss energy constraints. We say that a series of real weights (wi)i∈N satisfies485

the energy constraint with budget B if486

k∑
i=0

wi ≥ −B487

for all k ∈ N. We will prove that for LDS (M, q) of dimension at most 3, satisfaction of energy488

constraints is decidable. The proof is based on the fact that three-dimensional systems are489
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tractable thanks to Baker’s theorem [13]. For higher-dimensional systems, no such tractability490

result is known. We will show that deciding satisfaction of energy constraints is, in general,491

at least as hard as the Positivity Problem, already with linear weight functions.492

4.1 Baker’s theorem and its applications493

A linear form in logarithms is an expression of the form Λ = b1 Log α1 + . . . + bm Log αm494

where bi ∈ Z and αi ∈ Q for all 1 ≤ i ≤ m. Here Log denotes the principal branch of the495

complex logarithm. The celebrated theorem of Baker places a lower bound on |Λ| in case496

Λ ̸= 0. Baker’s theorem, as well as its p-adic analogue, play a critical role in the proof of [21]497

that the Skolem Problem is decidable for LRS of order at most 4, as well as decidability of498

the Positivity Problem for low-order LRS.499

▶ Theorem 16 (Special case of the main theorem in [25]). Let Λ = b1 Log α1 + . . .+bm Log αm500

be as above, D = [Q(α1, . . . , αm) : Q], and suppose A, B ≥ e are such that A > H(αi) and501

B > |bi| for all 1 ≤ i ≤ m. If Λ ̸= 0, then502

log |Λ| > −(16mD)2(m+2)(log A)m log B.503

A direct consequence of Baker’s theorem is the following [20, Corollary 8]. Recall that T504

denotes {z ∈ C : |z| = 1}.505

▶ Lemma 17. Let α ∈ T ∩ Q and β ∈ Q. For all n ≥ 2, if αn ≠ β then |αn − β| > n−C
506

where C is an effective constant that depends on α and β.507

If α is not a root of unity, αn = β holds for at most one n and n can be effectively bounded.508

▶ Lemma 18. Let α, β ∈ Q be non-zero, and suppose α is not a root of unity. There exists509

effectively computable N ∈ N such that αn ̸= β for all n ∈ N with n > N .510

Combining the two lemmas above, we obtain the following.511

▶ Theorem 19. Let α ∈ T, β ∈ Q, and suppose α is not a root of unity. There exists512

effectively computable N, C ∈ N such that for n > N , |α − β| > n−C .513

The next lemma summarises the family of LRS to which we can apply Baker’s theorem. For514

reasons of space we delegate the proof to the appendix.515

▶ Lemma 20. Let γ ∈ T be not a root of unity, r1, . . . , rℓ ∈ R be non-zero, and516

un =
m∑

i=1
ciΛn

i517

be an LRS over R where the right-hand side is in the exponential-polynomial form, ci, Λi ∈ Q518

for all i, and each Λi is in the multiplicative group generated by {γ, r1, . . . , rℓ}. Suppose519

m > 0, i.e. (un)n∈N is not identically zero.520

(a) There exists effectively computable N1 such that un ̸= 0 for all n > N1.521

(b) For n > N1, |un| > Lnn−C , where L = maxi |Λi| and C is an effectively computable522

constant.523

(c) It is decidable whether un ≥ 0 for all n.524
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4.2 Satisfaction of energy constraints525

Before giving our decidability result, we need one final ingredient about partial sums of LRS.526

Let wn = nkλn and un =
∑n

k=0 wk. If λ = 1, then un = p(n), where p is a polynomial of527

degree k + 1. If λ ̸= 1, then un = q(n)λn, where q(n) is a polynomial of degree at most k.528

To see this, observe that q(n) can be chosen as the solution of λq(n) − q(n − 1) = nk. It529

follows that if the LRS (wn)n∈N has only real eigenvalues, then so does the sequence given by530

un =
∑n

k=0 wk. Similarly, if (wn)n∈N is diagonalisable and does not have 1 as an eigenvalue,531

then the same applies to (un)n∈N. In fact, the eigenvalues of (un)n∈N form a subset of the532

eigenvalues of (wn)n∈N.533

▶ Theorem 21. Let M ∈ Q3×3, q ∈ Q3, δ ≤ 1, and w : R3 → R be a polynomial534

weight function with rational coefficients. For B ∈ Q≥0, it is decidable whether the weights535

(w(Mnq))n∈N satisfy the energy constraint with budget B.536

Proof. Let wn = δnw(Mnq) and un = B +
∑n

i=0 w(M iq). We have to decide if un ≥ 0537

for all n. First suppose M has only real eigenvalues. Then wn and un are both LRSs538

with only real eigenvalues. By taking subsequences if necessary, we can assume (un)n∈N539

is non-degenerate. We can write un =
∑m

i=1 pi(n)ρn
i where the right-hand side is in the540

exponential-polynomial form. In particular, for all i, pi is not the zero polynomial. Since541

(un)n∈N is non-degenerate, wlog we can assume ρ1 > . . . > ρm > 0. If p1(n) is negative for542

sufficiently large n, then the energy constraint is not satisfied. Otherwise, we can compute543

N such that for all n > N , un > 0. It remains to check whether un ≥ 0 for 0 ≤ n ≤ N .544

Next, suppose M has non-real eigenvalues λ, λ, and a real eigenvalue ρ. Write γ = λ/|λ| and545

r = |λ|. Then un is of the form546

un = cn +
m∑

i=1
ciΛn

i := cn + vn547

where Λ1, . . . , Λm are pairwise distinct and in the multiplicative group generated by r, ρ, δ, γ.548

Wlog we can assume ci ≠ 0 for all i, but c may be zero. If γ is a root of unity of order k > 0549

(i.e. γk = 1), then we can take subsequences (u(0)
n )n∈N, . . . , (u(k−1)

n )n∈N, where u
(j)
n = unk+j550

for n ∈ N and 0 ≤ j < k, and each (u(j)
n )n∈N has only real eigenvalues. We can then apply551

the analysis above. Hereafter we assume γ is not a root of unity.552

Suppose c = 0. Then Lemma 20 (c) applies and we can decide if un is positive. Next,553

suppose c ̸= 0 and L ≤ 1. We can compute N2 such that |cn| > |vn| for all n > N2. Hence554

in this case un ≥ 0 for all n iff c > 0 and un > 0 for 0 ≤ n ≤ N2. Finally, suppose c ̸= 0 and555

L ≥ 1. Applying Lemma 20 (b), there exists N3 such that |un| > |cn| for n > N3. Hence556

un ≥ 0 for all n iff un ≥ 0 for 0 ≤ n ≤ N3 and the sequence vn = un+N3 is positive. The latter557

can be decided by observing that vn =
∑m

i=1(ciΛN3
i )Λn

i and applying Lemma 20 (c). ◀558

4.3 Positivity-hardness559

Recall that the energy satisfaction problem is to decide, given M ∈ Qd×d, q ∈ Qd, B ∈ Q,560

and a polynomial p, whether there exists n such that
∑n

k=0 p(Mkq) < B. This problem is561

Positivity-hard already for LDS that are Markov chains; see the appendix for the proof.562

▶ Lemma 22. The Positivity Problem can be reduced to the energy satisfaction problem563

above restricted to a Markov chain (M, q) and a linear weight function w.564
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5 Conclusion565

We have shown how to compute the mean-payoff for arbitrary LDS equipped with a polynomial566

weight function and how to find an integral expression for the mean payoff in bounded LDS567

with a continuous weight function. In the special case of stochastic LDSs, which always have568

a bounded orbit, we could go further and compute finitely many points such that the mean569

payoff of the orbit is the arithmetic mean of the weight function evaluated at these points.570

For energy constraints, we showed decidability for three-dimensional systems by utilising the571

results about LRS based on Baker’s theorem.572

Instead of continuous weight functions, also functions w assigning a weight to each573

semialgebraic set in a collection of semialgebraic sets T1, . . . , Tm constitute an interesting574

class of weight functions. Here, several interesting questions can be asked. E.g., given an LDS575

(M, q) ∈ Qd×d × Qd and w as above, compare the (discounted) total reward/mean-payoff576

to a given threshold. Here at time n the reward received is
∑m

i=1 1(Mnq ∈ Ti)w(Ti). This577

problem appears to be difficult with deep connections to Diophantine approximation.578
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Proof of Lemma 2652

▶ Lemma 2. Let un =
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0 ≤ n < d, where d =
∑m

i=1(deg(pi) + 1), such that un ̸= 0.655
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It will be of the form657

vn =
∑
i∈I

qi(n)λn
i658

where I ⊆ {1, . . . , m} with k ∈ I, deg(qk) < deg(pk), and for all i ∈ I, qi is not identically659

zero with deg(qi) ≤ deg(pi). Observe that if (un)n∈N is identically zero, then so is (vn)n∈N.660
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Moreover, if vn is non-zero, then either un or un+1 is non-zero. Repeating the process of661

constructing vn from un at most
∑m

i=1 deg(pi) times, we obtain662

wn =
m∑

i=1
ciλ

n
i663

that is identically zero if un is identically zero, where each ci is an algebraic number and664

c := [c1 · · · cm]⊤ ̸= 0.665

It remains to argue that wn cannot be identically zero. Consider the system of equations666

m∑
i=1

xiλ
n
i = 0 for 0 ≤ n < m.667

We can write it as Mx = 0, where x = [x1 · · · xm]⊤ and M is a Vandermonde matrix with668

det(M) =
∏

i̸=j(λi − λj). Since λ1, . . . , λm are distinct by assumption, M is invertible and669

Mx = 0 if and only if x = 0. Since c ̸= 0, it follows that wn ̸= 0 for some 0 ≤ n < m. Hence670

there exists n′ ≤ n +
∑m

i=1 deg(pi) = n + (d − m) < d such that un′ ̸= 0. ◀671

Proof of Lemma 3672

▶ Lemma 3. Let (un)n∈N be as in the statement of Lemma 2. If un ∈ R for all n ∈ N, then673

for every 1 ≤ i ≤ m there exists j such that pj(n) = pi(n) and λj = λi.674

Proof. If m = 0, the statement is (vacuously) true. Suppose m > 1, and consider675

vn = un − un =
m∑

i=1
pi(n)λn

i −
m∑

j=1
pj(n)λj

n
.676

Since vn = 0 for all n, and pi, pj is non-zero for all i, j, there must be 1 ≤ i1, j1 ≤ m such677

that λi1 = λj1 . Hence678

vn =
∑
i ̸=i1

pi(n)λn
i −

∑
j ̸=j1

pj(n)λj
n

︸ ︷︷ ︸
wn

+(pi1(n) − pj1(n))λn
679

where λ = λi1 = λj1 . Since λi ̸= λj for i ̸= j, for all i ̸= i1 and j ̸= j1 we have λi, λj ≠ λ.680

Hence pi1(n) − pj1(n) = 0. We therefore have λj1 = λi1 and pj1(n) = pi1(n). It remains681

to observe that wn is also identically zero and repeat the argument above until for every682

1 ≤ i ≤ m a value j with the required property has been found. ◀683

Proof of Theorem 5684

▶ Theorem 5. Let (un)n∈N be an LRS over Q. It is decidable whether limn→∞ un/n exists,685

in which case the limit is rational and effectively computable.686

Proof. Write un =
∑m

i=1 pi(n)λn
i , where the right-hand side is in the exponential-polynomial687

form, and suppose |λ1| ≥ . . . ≥ |λm| > 0. If m = 0, then the sequence is identically zero.688

Suppose m > 0. By [10, Theorem 2], for every ϵ > 0, |un| > (|λ1| − ϵ)n for sufficiently689

large n. Hence if |λ1| > 1, then the limit does not exist. Similarly, if |λ1| < 1, then the690

limit is zero. Suppose therefore |λ1| = 1. Let k be the largest integer such that |λi| = 1691

for all 1 ≤ i ≤ k, and define vn =
∑k

i=1 pi(n)λn
i . It suffices to consider limn→∞ vn/n as692

limn→∞
∑m

i=k+1 pi(n)λn
i = 0.693
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Write vn =
∑l

i=1 ni
∑ki

j=1 ci,jλn
i,j where

∑ki

j=1 ci,jλn
i,j is in the exponential-polynomial694

form for all i. If l = 0, then limn→∞ vn/n = 0. Hence suppose l ≥ 1. Let695

wn =
kl∑

j=1
cl,jλn

l,j .696

By Lemma 2, (wn)n∈N is not identically zero. Applying [6, Lemma 4], if λl,j ≠ 1 for some697

j then there exist a, b ∈ R such that a < b, wn < a for infinitely many n, and wn > b for698

infinitely many n. Hence limn→∞ vn/n can exist only if kl = 1 and λl,1 = 1. Under this699

assumption, limn→∞ vn/n exists and is equal to cl,1 if and only if l = 1.700

Suppose the limit above exists. To see that it must be rational, observe that by701

construction there exists 1 ≤ i ≤ k such that λi = 1 and pi(n) is equal to either cl,1 or ncl,1.702

Since (un)n∈N takes rational values, σ(un) = un for all n ∈ N and σ an automorphism of C.703

By the uniqueness of the exponential-polynomial representation, σ(cl,1λn
l,1) = cl,1λn

l,1 for all704

n and σ, which implies that cl,1 is rational. ◀705

Proof of Proposition 9706

▶ Proposition 9. Under Assumption 1, the orbit (Jkq)k∈N is bounded if and only if all707

eigenvalues on the diagonal of J have modulus at most 1 and the Jordan blocks in J with an708

eigenvalue α with |α| = 1 have size 1.709

Proof. First, assume there is an eigenvalue α on the diagonal of J with |α| > 1. Let i be a710

coordinate at which a Jordan block containing α ends. Then, qi ̸= 0 and hence (Jkq)i = αkqi711

is not bounded. Next, assume there is a Jordan block of size ℓ > 1 with an eigenvalue α with712

|α| = 1. W.l.o.g. assume that this is the first Jordan block. Then, the first ℓ coordinates of713

Jkq are given by Jk
α,ℓ ·

[
q1 . . . qℓ

]⊤ and we have qℓ ̸= 0. We compute714

(Jkq)ℓ−1 = αk · qℓ−1 + k · αk−1 · qℓ,715

which diverges for k → ∞.716

For the other direction, observe that Jk
α,ℓ tends to 0 if |α| < 1. Further, the powers of717

Jordan blocks of size 1 with an eigenvalue α with |α| = 1 are bounded as they simply contain718

αk, which has modulus 1. ◀719

Proof of Lemma 20720

▶ Lemma 20. Let γ ∈ T be not a root of unity, r1, . . . , rℓ ∈ R be non-zero, and721

un =
m∑

i=1
ciΛn

i722

be an LRS over R where the right-hand side is in the exponential-polynomial form, ci, Λi ∈ Q723

for all i, and each Λi is in the multiplicative group generated by {γ, r1, . . . , rℓ}. Suppose724

m > 0, i.e. (un)n∈N is not identically zero.725

(a) There exists effectively computable N1 such that un ̸= 0 for all n > N1.726

(b) For n > N1, |un| > Lnn−C , where L = maxi |Λi| and C is an effectively computable727

constant.728

(c) It is decidable whether un ≥ 0 for all n.729
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Proof. Define D = {i : |Λi| = L} and R = {i : |Λi| < L}. The terms ciΛn
i for i ∈ D are730

called dominant. We have731

un =
∑
i∈D

ciΛn
i︸ ︷︷ ︸

vn

+
∑
i∈R

ciΛn
i︸ ︷︷ ︸

zn

.732

We next investigate |vn| as n → ∞. Recall that each Λi is of the form γm0rm1
1 · · · rmℓ

ℓ , where733

m0, . . . , mℓ ∈ Z. In particular, for all i, Λi = |Λi|γki for some ki ∈ Z. Hence we can write734

vn = Ln
K∑

i=−K

biγ
in

735

where each bi is equal to some cj . We have736

vn = γ−KnLn
2K∑
i=0

b−K+iγ
in = γ−KnLn

2K∏
i=0

(γn − αi)737

where α0, . . . , α2K ∈ Q are the zeros of the polynomial p(z) =
∑2K

i=0 b−K+iz
i. Since γ is not738

a root of unity, we can apply Theorem 19 to each factor (γn − αi) to conclude that there739

exist effectively computable N1, C such that |vn| > Lnn−C for al n > N1. Since |Λi| < L for740

all i ∈ R, there exists (effectively computable) N2 such that |vn| > |zn| for n > N2. We have741

proven (a) and (b).742

Since un is real-valued, as discussed in for each 1 ≤ i ≤ m there exists 1 ≤ j ≤ m such that743

cjΛj = ciΛi. Hence vn, zn are both real-valued. By the analysis above sign(un) = sign(vn)744

for n > N2. Hence to check if un is positive we have to check if un ≥ 0 for 0 ≤ n ≤ N2745

and vn ≥ 0 for n > N2. To do the latter, let f(z) = z−Kp(z) and consider Z := f(T) ⊂ R.746

Observe that Z is equal to the closure of {γ−Knp(γn) | n ∈ N} and hence is compact. If747

Z contains a negative number, then by Kronecker’s theorem, vn is negative for infinitely748

many n, in which case un is not positive. Otherwise, vn and hence un are both positive.749

This concludes the proof of (c). ◀750

Proof of Lemma 22751

▶ Lemma 22. The Positivity Problem can be reduced to the energy satisfaction problem752

above restricted to a Markov chain (M, q) and a linear weight function w.753

Proof. It is known from [1, 22] that the Positivity Problem for arbitrary LRS over Q can754

be reduced to the following problem: given a Markov chain (M, q), decide if there exists n755

such that e1Mnq ≥ 1/2. We reduce the latter to the energy satisfaction problem. Given a756

Markov chain (M, q) ∈ Qd×d × d, let757

P =
[
M 0
0 M

]
758

and t = (1/2q, 1/2Mq) ∈ Q2d. Observe that (P, t) is also a Markov chain. Moreover,759

P nt = (1/2Mnq, 1/2Mn+1q). We choose the weight function w(x1, . . . , x2d) = 2(xd+1 − x1)760

and B = 1/2 − e1 · q. Then w(P nq) = e1Mn+1q − e1Mnq, and un :=
∑n

k=0 w(P nq) ≥ B if761

and only if e1Mn+1q ≥ 1/2. Hence there does not exist n such that e1Mnq ≥ 1/2 if and762

only if e1 · q < 1/2 and there does not exist n such that un < B. ◀763
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