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Abstract

We prove that for any integers α, β > 1, the existential fragment of the first-order theory of the structure
⟨Z; 0, 1, <,+, αN, βN⟩ is decidable (where αN is the set of positive integer powers of α, and likewise for
βN). On the other hand, we show by way of hardness that decidability of the existential fragment of
the theory of ⟨N; 0, 1, <,+, x 7→ αx, x 7→ βx⟩ for any multiplicatively independent α, β > 1 would lead
to mathematical breakthroughs regarding base-α and base-β expansions of certain transcendental numbers.
Finally, modifying the original proof of Hieronymi and Schulz we show that for any multiplicatively independent
α, β > 1, it is undecidable whether a given formula with at most 3 alternating blocks of quantifiers holds in
⟨N; 0, 1, <,+, αN, βN⟩.

1 Introduction

Presburger arithmetic, the first-order theory of the integers with addition and order, has been an object of study
for nearly a century. Its decidability was first established by Presburger in 1929 via a quantifier-elimination
procedure [16]; yet Presburger arithmetic remains to this day a topic of active research owing, among others,
to its deep connections to automata theory and formal languages (see, e.g., the survey [10]) as well as symbolic
dynamics and combinatorics on words (see, e.g., the excellent recent text [19]).1

Another rich line of inquiry has consisted in investigating expansions of Presburger arithmetic, i.e., theories
obtained by augmenting Presburger arithmetic with particular predicates or functions. Here one must proceed
with care: adding, for example, the multiplication function × : Z2 → Z (or even simply the ‘squaring’ function,
from which multiplication is easily recovered) to Presburger arithmetic immediately results in undecidability,
thanks to Gödel’s incompleteness theorem [8]. In fact, even the existential fragment of the first-order theory
of ⟨Z; 0, 1, <,+,×⟩ is undecidable, as shown by Matiyasevich in his negative solution of Hilbert’s 10th problem
(see [13]). Nevertheless, many decidable expansions of Presburger arithmetic have been discovered and studied
(see, for instance, the survey [5]). Decidability is usually established in one of two ways: either via quantifier
elimination, along the lines of Presburger’s original approach, or through automata-theoretic means, where integers
are encoded in a given base as strings of digits, which are in turn manipulated by automata.

Before giving examples of such expansions, let us introduce some notation. For a fixed integer α ≥ 2, we
denote by αN the set {αn : n ∈ N} of all positive powers of α, and by αx the function n 7→ αn that takes a positive
integer argument n to αn. We also write Vα(n) to represent the function taking n to the largest power of α that
divides n (thus, for example, V2(24) = 8).

Using automata theory, Büchi showed that, for any α, the first-order theory of ⟨Z; 0, 1, <,+, Vα⟩ is
decidable [6]. Villemaire however proved that, for multiplicatively independent α and β, the first-order theory of
⟨Z; 0, 1, <,+, Vα, Vβ⟩ is undecidable [21]. Semënov used quantifier elimination to show that, for any ‘effectively
sparse’ predicate P ⊂ Z, the first-order theory of ⟨Z; 0, 1, <,+, P ⟩ is decidable. Examples of sparse predicates
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include the sets of powers αN as well as the set of factorial numbers {n! : n ∈ N}.2 The question of whether
decidability could however be maintained with the addition of two (or more) power predicates goes back to the
1980s; it was finally answered in the negative in a recent paper of Hieronymi and Schulz [12].

Note that automata-theoretic techniques work well when all numbers in play can be represented over a common
base. But unfortunately, for multiplicatively independent α and β (such as 2 and 3), this is not the case: powers of
2, for example, have a very regular structure in base 2 but not in base 3, and vice-versa. Moreover, multiplicatively
independent power predicates enable one to formulate non-trivial number-theoretic assertions about integers, such
as the fact that there are only finitely many powers of 2 and powers of 3 that are no farther than 10 apart, say.
Such an assertion can in fact already be formulated in the first-order theory of ⟨Z; 0, 1, <, 2N, 3N⟩ (noting that
addition has been removed); the decidability of this theory is non-trivial, and was established by Semënov [18].
Very recently, the monadic second-order theory of ⟨Z; 0, 1, <, 2N, 3N⟩ was also shown decidable [3].

Hieronymi and Schulz’s undecidability result is quite intricate. The standard approach would have been to
show that multiplication is definable in ⟨Z; 0, 1, <,+, αN, βN⟩, but unfortunately, this is provably not the case [17].
The undecidability construction in [12] makes use of three quantifier alternations (i.e., four blocks of quantifiers
of alternating polarity). This naturally raises the question of whether weaker fragments might be decidable.
In [12, Section 5], Hieronymi and Schulz in fact conjecture that the existential fragment of ⟨Z; 0, 1, <,+, αN, βN⟩
is decidable subject to certain number-theoretic effectiveness assumptions.

Our main contribution is the following:

Theorem 1.1. There is an algorithm that, given integers α, β > 1 together with an existential formula φ of
⟨Z; 0, 1, <,+, αN, βN⟩, decides whether φ is true or not.

As noted above, automata-theoretic techniques appear inadequate to establish such statements. We make use
instead of mathematical tools from Diophantine approximation and transcendental number theory, in particular
Baker’s theorem on linear forms in logarithms, in a manner similar to [4, 20].

As a secondary contribution, we provide a shorter proof of Hieronymi and Schulz’s undecidability result,
requiring only two quantifier alternations (rather than three); this is presented in Sec. 8.

Finally, we also investigate the existential fragment of ⟨N; 0, 1, <,+, αx, βx⟩, in which the power predicates have
been replaced by powering functions.3 We have not been able to establish either decidability or undecidability;
however, we prove the following by way of hardness:

Theorem 1.2. Let α, β > 1 be multiplicatively independent integers. Write (An)
∞
n=0 for the base-β expansion

of logβ(α) and (Bn)
∞
n=0 for the base-α expansion of logα(β). Suppose that the existential fragment of

⟨N; 0, 1, <,+, αx, βx⟩ is decidable. Then the following are in turn decidable:

(A) Whether a given pattern appears in (An)
∞
n=0.

(B) Whether a given pattern appears at some index simultaneously in (An)
∞
n=0 and (Bn)

∞
n=0.

(C) Whether a given pattern appears in (Aαn)∞n=0.

To place Thm. 1.2 in context, consider the case of α = 2 and β = 3. The constant log3(2) is a transcendental
number that is widely conjectured to be normal (and thus in base 3, every length-l pattern should appear within
(An)

∞
n=0 with density 3−l). A fortiori, this would entail that the answer to the first query is always positive.

However, normality on its own is not sufficient to settle either of the other two queries.

2 Mathematical background

We denote by 0 a (column) vector of all zeros whose dimension will be clear from the context. We will occasionally
write d-dimensional column vectors in the form (x1, . . . , xd). For vectors x = (x1, . . . , xd), y = (y1, . . . , yd), and
a relation ∼, we write x ∼ y as a shorthand for xi ∼ yi for all i. For a ring R, by an R-linear form we mean
a function of the form h(x1, . . . , xl) := c1x1 + · · · + clxl where ci ∈ R for all i. We say that α, β ̸= 0 are
multiplicatively independent if for all n1, n2 ∈ N, αn1 = βn2 implies n1 = n2 = 0.

2The complexity of expansions of Presburger arithmetic by a power predicate αN or a powering function αx was very recently

investigated [2].
3We have switched the domain from Z to N; this is entirely benign, as the order relation is available to us, and was carried out

chiefly so as not to have to separately redefine the meaning of the powering functions over negative entries.
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2.1 Logical theories. A structure M consists of a universe U , constants c1, . . . , ck ∈ U , predicates P1, . . . , Pl

where each Pi ⊆ Uµ(i) for some µ(i) ≥ 1, and functions f1, . . . , fm where each fi has the type fi : U
δ(i) → U

for some δ(i) ≥ 1. By the language of the structure M we mean the set of all well-formed first-order formulas
constructed from symbols denoting the constants c1, . . . , ck, predicates P1, . . . , Pl, and functions f1, . . . , fm, as
well as the symbols ∀,∃,∧,∨,¬,=. We will additionally write x ∈ P for a unary predicate P to mean P (x).
A term is a well-formed expression constructed from constant, function, and variable symbols. Terms represent
elements of the universe. A theory is simply a set of sentences, i.e., formulas without free variables. The theory
of the structure M is the set of all sentences in the language of M that are true in M. A formula is existential if
it is of the form ∃x1 · · · ∃xm : φ(x1, . . . , xm) for φ quantifier-free. The existential fragment of a theory T , which
itself is a theory, is the set of all existential formulas belonging to T . Finally, a theory T is decidable if there
exists an algorithm that takes a sentence φ and decides whether φ ∈ T .

For a positive integer x, denote by xN the unary predicate {xn : n ∈ N}. Let α, β > 1. We will be working
with the following structures and their theories.

• Let M1 = ⟨Z; 0, 1, <,+, αN, βN⟩. We will denote the language of this structure by Lα,β and its theory by
PA(αN, βN); in case α = β, we will write PA(αN) for the latter. Observe that using the constants 0, 1 and
addition, we can obtain any constant c ∈ N. On the other hand, −c for c > 0 can be accessed via the
relation x + c = 0. In fact, for any Z-linear form h over k variables, we can express h(x1, . . . , xk) = 0 in
the language Lα,β as s(x1, . . . , xk) = t(x1, . . . , xk) where s, t are Z-linear forms with non-negative integer
constants. Therefore, every atomic formula in Lα,β is equivalent to either t ∼ 0 or t ∈ γN, for ∼ ∈ {>,=},
γ ∈ {α, β} and t an integer linear combination of integer constants and variables.

• Let M2 = ⟨N; 0, 1, <,+, x 7→ αx, x 7→ βx⟩. That is, for γ ∈ {α, β}, instead of the predicate γN we have the
function that maps x to γx. We write PA(αx, βx) for the theory of M2. Note that the universe of M2 is N
as opposed to Z. This is to ensure that the functions are total and map into the universe of the structure.
For γ ∈ {α, β}, we can express x ∈ γN as ∃z : γz = x. Therefore, if we can decide (the existential fragment
of) PA(αx, βx) then we can also decide (the existential fragment of) PA(αN, βN).

A set X ⊆ Ud is definable in a structure M if there exists a formula φ in the language of M with d free
variables such that for all x1, . . . , xd ∈ U , φ(x1, . . . , xd) is true if and only if (x1, . . . , xd) ∈ X. A set X ⊆ Zd

is semilinear if it is definable in the structure M0 := ⟨Z; 0, 1, <,+⟩. We write L for the language of M, and PA
for its theory. By the result of Presburger that the theory of M0 admits quantifier elimination if we allow a
divisibility predicate [10], such X can be defined by a formula of the form

(2.1)
∨
i∈I

( ∧
j=Ji

tj(x1, . . . , xd) ≡ 0 mod Dj ∧
∧

k∈Kj

hk(x1, . . . , xd) ∼k ck

)
where Dj ≥ 1 and each tj , hj is a Q-linear form, ck ∈ Z, and ∼k ∈ {>,=}.

2.2 Number theory. Let x ∈ Z and p ∈ N be a prime. Then the p-adic valuation of x, denoted νp(x), is
the largest integer n such that pn divides x, whereas pn+1 does not. By convention, νp(0) = +∞. For integers
x, y and a prime p we have νp(x + y) ≥ min{νp(x), νp(y)}. Let z = a

b ∈ Q be non-zero with gcd(a, b) = 1.
Then the (absolute logarithmic) height of z is h(z) := max{log |a|, log |b|}. For z1, . . . , zk ∈ Q̸=0 we have that
h(1/zi) = h(zi),

h(z1 + · · ·+ zk) ≤ h(z1) + · · ·+ h(zk) + log(k)

and
h(z1 · · · zk) ≤ h(z1) + · · ·+ h(zk).

The following is a specialisation of Matveev’s version [14] of Baker’s theorem on linear forms to rational numbers.

Theorem 2.1. Suppose we are given k ≥ 0, non-zero γ1, . . . , γk ∈ Q, and b1, . . . , bk ∈ Z. Write B =
max{1, |b1|, . . . , |bk|}, Ai = max{h(γi), | log(γi)|, 0.16} for 1 ≤ i ≤ k, and

Λ = γb11 · · · γbkk − 1.

Then, assuming Λ ̸= 0,
log |Λ| > −1.4 · 30k+3 · k4.5 · (1 + log(kB)) ·A1 · · ·Ak.
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The following is a consequence of Kronecker’s theorem in Diophantine approximation [9].

Lemma 2.1. Let α, β ∈ N>1 be multiplicatively independent and I ⊆ R>0 be a non-empty open interval. Then
there exist infinitely many n1, n2 ∈ N such that αn1/βn2 ∈ I.

Proof. By multiplicative independence, logβ(α) is irrational. Write {x} for the fractional part of x. By Kronecker’s
theorem, ({n logβ(α)})∞n=0 is dense in (0, 1). That is,

{n1 logβ(α)− n2 : n1, n2 ∈ N} ∩ (0, 1)

is dense in (0, 1). Equivalently, {αn1/βn2 : n1, n2 ∈ N}∩(1, β) is dense in (1, β). It follows that {αn1/βn2 : n1, n2 ∈
N} is dense in (0,∞).

3 Overview of the results

Recall that our central problem is to decide, given α, β and an existential formula φ ∈ Lα,β , whether
φ ∈ PA(αN, βN). As the first step in our decidability proof, we will reduce our main problem to the following.

Problem 3.1. Given multiplicatively independent α, β ∈ N>1, z1, . . . , zl ∈ {α, β}, r, s ≥ 0, A ∈ Zr×l, b ∈ Zr,
C ∈ Zs×l, and d ∈ Zs, decide whether there exists z = (zn1

1 , . . . , znl

l ) such that Az > b and Cz = d.

The reduction from the existential fragment of PA(αN, βN) to Problem 3.1 is captured by the following lemma.
The proof, given in Sec. 4, uses fairly standard arguments about Presburger arithmetic.

Lemma 3.1. Let α, β ∈ N>1.

(a) If α, β are multiplicatively dependent, then deciding the existential fragment of PA(αN, βN) reduces to
deciding the existential fragment of the theory of PA(γN) for some γ ∈ N.

(b) If α, β are multiplicatively independent, then deciding the existential fragment of PA(αN, βN) reduces to
Problem 3.1.

Recall that the full theory PA(γN) is known to be decidable. Hence it remains to show decidability of Problem 3.1,
which we do in Sections 5 and 6.

Theorem 3.1. Problem 3.1 is decidable.

We approach Problem 3.1 by first studying how to solve systems of the form Cz = d, i.e., the case where there
are no inequalities. The following definition captures the structure of solutions of such systems.

Definition 3.1. A set X ⊆ Nl belongs to the class A if it can be written in the form

(3.2) X =
⋃
i∈I

⋂
j∈Ji

Xj

where I and Ji for every i ∈ I are finite, and each Xj is either of the form

(3.3) Xj =
{
(n1, . . . , nl) ∈ Nl : nµ(j) = nσ(j) + cj

}
or of the form

(3.4) Xj =
{
(n1, . . . , nl) ∈ Nl : nξ(j) = bj

}
where 1 ≤ ξ(j), µ(j), σ(j) ≤ l and bj , cj ∈ N.

The sets belonging to A are semilinear. Observe that every finite subset of Nl belongs to A, and the class A
is closed under finite unions and intersections. In Sec. 5, we will prove the following structure and effectiveness
result about the system Cz = d. Our main tool is Baker’s theorem on linear forms, which is frequently used when
solving Diophantine equations where the unknowns appear in the exponent position.
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Theorem 3.2. Let α, β ∈ N>1 be multiplicatively independent and z1, . . . , zl ∈ {α, β} for some l ≥ 1. Further let
s ≥ 1, C ∈ Zs×l, d ∈ Zs, and S ⊆ Nl be the set of solutions of Cz = d, where z = (zn1

1 , . . . , znl

l ). Then S ∈ A.
Moreover, a representation of S in the form (3.2) can be effectively computed, with the additional property that
zµ(j) = zσ(j) for every Xj of the form (3.3).

When proving Thm. 3.2, because the class A is closed under intersections, it suffices to consider a single
equality

(3.5) c1z
n1
1 + · · ·+ clz

nl

l = d

where c1, . . . , cl ∈ Z̸=0, d ∈ Z, α, β > 1 are multiplicatively independent, and z1, . . . , zl ∈ {α, β}. We will show
that the set S of solutions of (3.5) belongs to A and has an effectively computable representation. Let us further
stipulate that zi = α and zj = β for some i, j, and that no proper sub-sum of the left-hand side of (3.5) is zero.
In this case, it can be shown that the set of solutions is finite and can be effectively computed; see the proof of
Thm. 5.3.4 The idea is to use Baker’s theorem on linear forms iteratively to bound the gaps between n1, . . . , nl,
which, in case d ̸= 0, will yield an upper bound on all of n1, . . . , nl. If d = 0, then we need an additional argument
involving p-adic valuations. On the other hand, if

⋂
j∈Ji

Xj is infinite for some i in the representation of S in the
form (3.2), then some sub-sum of c1z

n1
1 + · · ·+ clz

nl

l must be zero at infinitely many points (n1, . . . , nl).

Example. Consider the equation

(3.6) 15 · 3n1 − 5 · 3n2 + 2n3 = 8.

The only proper sub-sum of the left-hand side that can be zero is 15 ·3n1 −5 ·3n2 . We therefore have the infinitely
many solutions

X :=
{
(n1, n2, n3) ∈ N3 : n2 = n1 + 1 ∧ n3 = 3

}
.

Now suppose no proper sub-sum is zero. Let us additionally stipulate that 3n2 ≥ 3n1 ≥ 2n3 . In this case, if
n2 > n1+1, then the summand 5 ·3n2 becomes too large in magnitude: we have that 5 ·3n2 ≥ 45 ·3n1 , 45 ·2n3 and
hence (3.6) cannot hold. Therefore, we are left with the possibilities n2 = n1 and n2 = n1 + 1. If we substitute
n2 = n1 into (3.6), we obtain 10 · 3n2 + 2n3 = 8, which does not have a solution. The substitution n2 = n1 + 1,
meanwhile, is not permitted as 15 · 3n1 − 5 · 3n2 becomes zero.

Using the same argument as above, we can handle the case where 3n1 ≥ 3n2 ≥ 2n3 . The four remaining
cases (e.g., 3n1 ≥ 2n3 ≥ 3n2), however, require an iterated application of Baker’s theorem on linear forms as in
Thm. 5.3 to bound the solutions. Checking all possible (n1, n2, n3) up to this bound, we obtain that the set of
all solutions of (3.6) is {(0, 3, 7), (1, 8, 15)} ∪X.

Once we know how to solve systems of linear equations in powers of α and β, we discuss how we deal with
inequalities. In Sec. 6, we argue as follows. Consider a system Az > b and Cz = d as in the statement of
Problem 3.1. Observing that x > −c is equivalent to x = −c + 1 ∨ · · · ∨ x = 0 ∨ x > 0 for any variable x and
positive integer c, we rewrite our system in the form∨

k∈K

Akz > bk ∧ Ckz = dk

where Ak ∈ Zr×l, Ck ∈ Zs×l,bk ∈ Zr,dk ∈ Zs and, importantly, bk ≥ 0 for all k. We can now solve each
Akz > bk ∧ Ckz = dk separately. Denote by Sk the set of all (n1, . . . , nl) ∈ Nl that satisfy Ckz = dk. By
Thm. 3.2, apart from finitely many exceptional solutions which can be effectively computed, the set Sk is defined
by equations of the form either na = nb + c or na = c, where 1 ≤ a, b ≤ l, c ∈ N, and za = zb in the former case.
We can use each such equation as a substitution rule to eliminate the variable za; see the proof of Thm. 3.1 on
Page 20 for the exact procedure. In the end, we construct Ãk ∈ Zr×l such that Akz > bk ∧ Ckz = dk has a
solution if and only if Ãkz > bk has a solution.

4For convenience, we make additional assumptions on zn1
1 , . . . , z

nl
l in the statement of Thm. 5.3. A slightly modified proof can

be given to show finiteness of solutions of (3.5) only assuming that both α, β appear among z1, . . . , zl and requiring that all proper
sub-sums of c1z

n1
1 + · · ·+ clz

nl
l be non-zero.
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It remains to show how to solve the system Ãkz > bk. To do this, we first argue that Ãkz > bk has a solution
if and only if Ãkz > 0 has a solution. Next, using a form of Fourier-Motzkin elimination, we reduce solving the
latter system to solving systems of the form

(3.7)



hi(z
n3
3 ,...,z

nl
l )

z
n2
2

< zn1
1 /zn2

2 − a <
hj(z

n3
3 ,...,z

nl
l )

z
n2
2

for all (i, j) ∈ X1 ×X2

zn1
1 , zn2

2 > zn3
3 > · · · > znl

l

hi(z
n3
3 , . . . , znl

l ) > 0 for all i ∈ I

n2 − n3 > N

where X1, X2, I are finite sets of indices, each hi is a Q-linear form, a ∈ Q>0, and N ∈ N. Our algorithm
for solving the system (3.7) proceeds by first inductively solving the sub-system consisting of the inequalities
hi(z

n3
3 , . . . , znl

l ) < hj(z
n3
3 , . . . , znl

l ) for all (i, j) ∈ X, zn3
3 > · · · > znl

l , and hi(z
n3
3 , . . . , znl

l ) > 0 for i ∈ I. If no
such solution exists, then (3.7) does not have a solution either. Otherwise, let (m3, . . . ,ml) be a solution to the
sub-system. In Sec. 6, we use arguments from Diophantine approximation to prove that in the latter case the
system (3.7) does always have a solution, and show to construct such a solution from (m3, . . . ,ml).

In Sec. 7 we prove Thm. 1.2 and give a whole class of queries that become decidable assuming decidability of
the existential fragment of PA(αx, βx). These include occurrence of a given pattern in base-β or base-α expansions
of logα(β). Finally, in Sec. 8 we show that for any multiplicatively independent α, β ∈ N>1, already for formulas
with three alternating blocks of quantifiers (i.e., formulas with quantifier alternation depth 2) the membership
problem in PA(αN, βN) is undecidable. This result is included for the sake of describing the decidability landscape
as completely as possible. We use the approach developed by Hieronymi and Schulz in [12], but reduce from the
Halting Problem for 2-counter machines as opposed to the Halting Problem for Turing machines, which results in
a simpler construction. Thus for any multiplicatively independent α, β, the decidability question for PA(αN, βN)
remains open only for formulas containing exactly two alternating blocks of quantifiers.

4 From formulas to systems of inequalities

We now prove Thm. 3.1. Our main tool is the fact that semilinear sets have quantifier-free representations
constructed from linear inequalities and divisibility constraints. We note that our reduction from the decision
problem for the existential fragment of PA(αN, βN) to Problem 3.1 does not preserve α and β.

Proof. [Proof of Thm. 3.1] Suppose we are given α, β > 1 and an existential formula ∃z : φ(z) in the language Lα,β ,
where φ is quantifier-free and z is a collection of variables. Before inspecting whether α, β are multiplicatively
independent, we will apply a sequence of transformations to ∃z : φ(z). For a term t and γ ∈ {α, β}, we can rewrite
the formula ¬(t ∈ γN) as

t < 1 ∨ ∃x : x ∈ γN ∧ x < t < x+ · · ·+ x︸ ︷︷ ︸
γ times

.

Since ¬(t > 0) and ¬(t = 0) are equivalent to t < 0 ∨ t = 0 and t > 0 ∨ t < 0 respectively, we can construct a
formula ∃x : φ̂(x) equivalent to ∃z : φ(z) in which the negation symbol does not occur. We can also rewrite t ∈ γN

as y = t ∧ y ∈ γN, where y is a fresh variable. Therefore, we can construct a formula

φ̃(y,x) :=
∨
e∈E

∧
j∈Je

µj(y,x)

not containing the negation symbol, where y denotes a collection y1, . . . , yl of fresh variables, with the following
properties.

• ∃z ∈ Zk : φ(z) ⇔ ∃y ∈ Zl,x ∈ Zk : φ̃(y,x).

• For each yi, there exists unique γi ∈ {α, β} such that yi ∈ γNi is a sub-formula of φ̃.

• Each µj(y,x) is an atomic formula either of the form t(y,x) ∼ 0 for a term t(y,x) and ∼ ∈ {>,=}, or of
the form yi ∈ γNi for some i.
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Next, write each
∧

j∈Je
µj(y,x) in the form∧

j∈Ae

yσ(j) ∈ γNσ(j) ∧
∧

j∈Be

tj(y,x) ∼j 0

where σ(j) ∈ {1, . . . , l} and ∼j ∈ {>,=} for all j. We can then write ∃y ∈ Zl,x ∈ Zk : φ̃(y,x) equivalently as

(4.8)
∨
e∈E

(
∃y ∈ Zl :

∧
j∈Ae

yσ(j) ∈ γNσ(j) ∧ ∃x ∈ Zk :
∧

j∈Be

tj(y,x) ∼j 0

)
.

For e ∈ E, let Se be the set of all y ∈ Zl such that ∃x ∈ Zk :
∧

j∈Be
tj(y,x) ∼j 0 holds. Observe that each Se is

semilinear. Setting zi = γi and yi = zni
i for 1 ≤ i ≤ l, we can rewrite (4.8) as∨

e∈E

∃n1, . . . , nl ∈ N : (zn1
1 , . . . , znl

l ) ∈ Se

which is equivalent to
∃n1, . . . , nl ∈ N : (zn1

1 , . . . , znl

l ) ∈ S

for semilinear S =
⋃

e∈E Se.
Recall from Sec. 2 that each semilinear set has a representation in the form (2.1). For x, y, r ≥ 0 and λ,D ≥ 1,

note that x+ y ≡ r mod D is equivalent to∨
0≤r1,r2<D

r1+r2≡r mod D

x ≡ r1 mod D ∧ y ≡ r2 mod D

and x ≡ r mod D is equivalent to
∨λ−1

k=0 x ≡ r+kD mod λD. Hence we can construct D ≥ 1 and a representation
of S of the form

(4.9)
∨
p∈P

( l∧
i=1

xi ≡ ri,p mod D ∧
∧

s∈Sp

hs(x1, . . . , xd) ∼s bs

)

where each ri,p ≥ 0, hs is a Z-linear form, bs ∈ Z, and ∼s ∈ {>,=}. Write S̃p for the set defined by p ∈ P in (4.9),

so that S =
⋃

p∈P S̃p. It suffices to reduce deciding ∃n1, . . . , nl ∈ N : (zn1
1 , . . . , znl

l ) ∈ S̃p to either Problem 3.1 or
deciding PA(γ) for some γ, depending on whether α, β are multiplicatively independent. To do this, first observe
that for γ ∈ {α, β}, the sequence (γn mod D)∞n=0 is ultimately periodic, with the additional property that if x
occurs at least twice in the sequence, then it occurs infinitely often. Next, construct Dα, Dβ such that

(i) (αn mod D)∞n=0 is ultimately periodic with period Dα,

(ii) (βn mod D)∞n=0 is ultimately periodic with period Dβ , and

(iii) if α, β are multiplicatively dependent, then αDα = βDβ .

Such Dα, Dβ can always be constructed because if a sequence is ultimately periodic with period k, then it is
ultimately periodic with period km for every m > 0. We have that for all 1 ≤ i ≤ l and p ∈ P , zni

i ≡ ri,p mod D
is either false for all ni, true for exactly one value of ni, or true on a union of arithmetic sequences with period
Dzi . Therefore, ∃n1, . . . , nl : (z

n1
1 , . . . , znl

l ) ∈ S̃p can be equivalently expressed as a disjunction of formulas of the
form

∃m1, . . . ,ml ∈ N :
∧

s∈Sp

hs

(
z
ts,1
1 , . . . , z

ts,l
l

)
∼s bs

where for all s, l, ts,l = a or ts,l = a + mi · Dzi for a constant a ∈ N. It remains to observe that

z
ai+mi·Dzi
i = zai

i

(
z
Dzi
i

)mi

. Therefore, we have reduced deciding the truth value of ∃x : φ(x) to solving systems

of (in)equalities in
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• powers of γ := αDα in case α, β are multiplicatively dependent, and

• powers of γα := αDα , γβ := βDβ otherwise.

Note that if α, β are multiplicatively independent, then γα, γβ are also multiplicatively independent. This
concludes the proof.

5 Solving Diophantine equations

We now discuss solutions of systems of affine Diophantine equations in powers of α and β. This is the first step
towards showing decidability of Problem 3.1. Our goal in this section is to prove the following theorem.

Theorem 5.1. Let α, β ∈ N>1 be multiplicatively independent and z1, . . . , zl ∈ {α, β} for some l ≥ 1. Further let
s ≥ 1, C ∈ Zs×l, d ∈ Zs, and S ⊆ Nl be the set of solutions of Cz = d, where z = (zn1

1 , . . . , znl

l ). Then S ∈ A.
Moreover, a representation of S in the form (3.2) can be effectively computed, with the additional property that
zµ(j) = zσ(j) for every Xj of the form (3.3).

First let us consider the easier case where α = β.

Theorem 5.2. Let α ∈ N>1, l ≥ 1, c1, . . . , cl ∈ Z̸=0, and d ∈ Z. Further let S ⊆ Nl be the set of solutions of

c1α
n1 + · · ·+ clα

nl = d.

Then S ∈ A, and a representation of S in the form (3.2) can be effectively computed.

Proof. By a case analysis on the ordering of zn1
1 , . . . , znl

l , it suffices to show that for any permutation

σ : {1, . . . , l} → {1, . . . , l}, the set S̃ of all (n1, . . . , nl) ∈ Nl such that c1α
n1 + · · ·+ clα

nl = d

nσ(1) ≥ · · · ≥ nσ(l)

belongs to A and has an effectively computable representation. We prove this by induction on l. For l = 1, the
statement is immediate. Suppose l ≥ 2. Because we can rename the variables, it suffices to consider σ(j) = j for

all j. Let N be such that αN > |d|+
∑l

i=1 |ci|. Then for every (n1, . . . , nl) ∈ S̃ we have 0 ≤ n1 − n2 ≤ N and let

S̃ =
⋃N

k=0 S̃k, where each S̃k is the set of all solutions of
c1α

n1 + · · ·+ clα
nl = d

n2 ≥ · · · ≥ nl

n1 = n2 + k.

To construct a representation of S̃k, we have to eliminate the variable n1 using the last equation above. To do
this, inductively solve the system (c1α

k + c2)α
n2 + c3α

n3 + · · ·+ clα
nl = d

n2 ≥ · · · ≥ nl.

and then add the condition n1 = n2 + k.

Next, we show how to solve, under certain assumptions, equations involving powers of both α and β by
applying Baker’s theorem on linear forms in an iterative fashion. These assumptions will be lifted later when
proving Thm. 3.2.

Theorem 5.3. Let α, β ∈ N>1 be multiplicatively independent, l ≥ 2, z1, . . . , zl ∈ {α, β} with z1 = α and z2 = β,
c1, . . . , cl ∈ Z̸=0, and d ∈ Z. Denote by S the set of all (n1, . . . , nl) ∈ Nl satisfying all of the following.
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(a) c1z
n1
1 + · · ·+ clz

nl

l = d;

(b) zn1
1 , zn2

2 ≥ zn3
3 ≥ · · · ≥ znl

l ;

(c) For every non-empty proper subset I of {1, . . . , l} it holds that
∑

i∈I ciz
ni
i ̸= 0.

Define µ(j) to be 1 if zj = α and µ(j) = 2 if zj = β. We have the following.

(i) We can compute ξ1, ξ2 ∈ Q such that n1 ≥ log(β)
log(α)n2 − ξ1 and n2 ≥ log(α)

log(β)n1 − ξ2.

(ii) There exist effectively computable polynomials p1, . . . , pl ∈ Q[x, y] such that

nµ(j) − nj < pj(log(1 + n1), log(1 + n2))

for all (n1, . . . , nl) ∈ S and 3 ≤ j ≤ l.

(iii) The set S is finite and can be effectively computed.

Proof. Observe that nj ≤ nµ(j) for all j ≥ 1 by (b). Let

S1 =
{
(n1, . . . , nl) ∈ S : n1 > n2

}
and S2 = S \ S1.

Proof of (i). Together (a) and (b) imply that, for all (n1, . . . , nl) ∈ S,

(
|d|+

l∑
i=2

|ci|
)
zn2
2 ≥ |c1|zn1

1 .

Taking logarithms and dividing by log(β) = log(z2) gives

n2 ≥ log(α)

log(β)
n1 −

log
(
|d|+

∑l
i=2 |ci|

)
− log |c1|

log(β)
.

This allows us to find ξ2. To compute ξ1, observe that by (a) and (b),

(
|d|+ |c1|+

l∑
i=3

|ci|
)
zn1
1 ≥ |c2|zn2

2

and proceed similarly.
Proof of (ii). By finite induction. Note that we can choose p1(x, y), p2(x, y) = 1. Suppose therefore

p1, . . . , pj have already been computed for some j ≥ 2. By swapping z1 and z2 if necessary, we can assume
zj+1 = z1 = α. (Observe that the roles z1 and z2 in the statement of our theorem are completely symmetrical.)
For (n1, . . . , nl) ∈ S define

X := −
∑

1≤i≤j
zi=α

ciα
ni−n1 ,

Y :=
∑

1≤i≤j
zi=β

ciβ
ni−n2 ,

Λ := α−n1βn2X−1Y − 1 =

(
−

∑
1≤i≤j
zi=α

ciα
ni

)−1

·
∑

1≤i≤j
zi=β

ciβ
ni − 1.
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By (c), X is non-zero and hence X−1 is well-defined, and similarly, Y and Λ are non-zero. Next, observe that (a)
can be written as

(5.10) Λ =

( l∑
i=j+1

ciz
ni
i − d

)
·
( ∑

1≤i≤j
zi=α

ciα
ni

)−1

.

We will estimate the magnitude of terms on both sides of this equation, starting with the left-hand side. Recall
the definition and the properties of the height function h(·) given in Sec. 2. We have that h(X−1Y ) ≤ h(X)+h(Y )
and

h(X) ≤ log(j) +
∑

1≤i≤j
zi=α

log |ci|+ (n1 − ni) log |α|,

h(Y ) ≤ log(j) +
∑

1≤i≤j
zi=β

log |ci|+ (n2 − ni) log |β|.

Therefore, using Thm. 2.1 we can compute κ1 ∈ Q>0 such that

(5.11) log |Λ| > −κ1 ·
(
1 + log(1 + max {n1, n2})

)
· max
1≤i≤j

{nµ(i) − ni}.

Applying the induction hypothesis, there exists computable q ∈ Q[x, y] such that

log |Λ| > −κ1 · q
(
log(1 + n1), log(1 + n2)

)
.

Next, consider the right-hand side of (5.10). Let a be the largest integer 1 ≤ i ≤ j such that zi = α. We have
that ∣∣∣∣ l∑

i=j+1

ciz
ni
i − d

∣∣∣∣ ≤ κ2α
nj+1

for some computable κ2 ∈ Z>0 and, by (c) and the induction hypothesis,∣∣∣∣ ∑
1≤i≤j
zi=α

ciα
ni

∣∣∣∣ > αna > αn1−r(log(1+n1), log(1+n2))

for a polynomial r ∈ Q[x, y]. Hence the magnitude of the right-hand side of (5.10) is bounded by
κ2α

r(log(1+n1), log(1+n2))−n1+nj+1 , and a necessary condition for (5.10) to hold is that

−κ1 · q
(
log(1 + n1), log(1 + n2)

)
< log

(
κ2 · αr(log(1+n1), log(1+n2))−n1+nj+1

)
which is equivalent to

(5.12) n1 − nj+1 <
κ1 · q

(
log(1 + n1), log(1 + n2)

)
− log(κ2)

log(α)
+ r

(
log(1 + n1), log(1 + n2)

)
.

It remains to choose pj+1 ∈ Q[x, y] such that pj+1(log(1 + n1), log(1 + n2)) is at least as large as the right-hand
side of (5.12).

Proof of (iii). Since α ̸= β by the multiplicative independence assumption, without loss of generality we can
assume that α < β. (The roles of α = z1 and β = z2 are symmetric and we can swap them if necessary.) Recall

the definitions of S1,S2. Elements of S2 can be bounded using (i), as log(β)
log(α) > 1 and n2 ≥ n1 ≥ log(β)

log(α)n2 − ξ1
together yield a bound on n2. It remains to bound S1.

Case 1: Suppose d ̸= 0. As in the proof of (ii), let

X = −
∑

1≤i≤l
zi=α

ciα
ni−n1 ,

Y =
∑

1≤i≤l
zi=β

ciβ
ni−n2 ,

Λ = α−n1βn2 ·X−1Y − 1.
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Similarly to the proof of (ii), X, Y , and Λ are non-zero, and we rewrite (a) in the form

(5.13) Λ = −d ·
( ∑

1≤i≤l
zi=α

ciα
ni

)−1

and bound the magnitude on both sides. Because n1 > n2 ≥ 0 for all solutions in S1, application of Thm. 2.1
and (ii) yields,

log |Λ| > −κ2p
(
log(n1)

)
where κ2 > 0 and p ∈ Q[x] are computed effectively. It remains to compute an upper bound for the right-hand
side. Let a be the largest integer 1 ≤ i ≤ l such that zi = α. We have that∣∣∣∣ ∑

1≤i≤l
zi=α

ciα
ni

∣∣∣∣ > αna > αn1−f(log(n1))

where f ∈ Q[x]. Hence a necessary condition for (n1, . . . , nl) ∈ S1 is

κ2 · p
(
log(n1)

)
>

(
n1 − f(log(n1))

)
· log(α)− log |d|

from which we can compute a bound on n1. Once we bound n1, a bound on the remaining variables can be
computed in the same way as above.

Case 2: Suppose d = 0. We will need a lemma.

Lemma 5.1. There exists a prime p ∈ N such that νp(β) > 0 and

log(α)

log(β)
>
νp(α)

νp(β)
.

Proof. If there is a prime p dividing β that does not divide α, then the statement is immediate. Suppose therefore
that α, β have exactly the same prime divisors p1, . . . , pk. We have

log(α)

log(β)
=
νp1

(α) log(p1) + · · ·+ νpk
(α) log(pk)

νp1(β) log(p1) + · · ·+ νpk
(β) log(pk)

.

By multiplicative independence, log(α)/ log(β) /∈ Q and hence νpi
(α)/νpi

(β) ̸= log(α)/ log(β) for all 1 ≤ i ≤ k.
It follows that log(α)/ log(β) > νpi(α)/νpi(β) for some i.

To bound the elements of S1, let a = max{i : zi = α} and b = max{i : zi = β}. Further let

A =
∑

1≤i≤l
zi=α

ciα
ni ,

B = −
∑

1≤i≤l
zi=β

ciβ
ni .

Let p be a prime as in Thm. 5.1. A necessary condition for (a) to hold is that

νp(A) ≥ νp(B).

As discussed in Sec. 2, we have

νp(B) ≥ min
zi=β

{
νp(ciβ

ni)
}
≥ νp(β

nb) = nb · νp(β).

Under the assumption n1 > n2, by (ii), there exists effectively computable q1 ∈ Q[x] such that nb >
n2 − q1(log(n1)). Hence,

νp(B) > n2νp(β)− q1(log(n1))νp(β).
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Meanwhile,

νp(A) = νp(α
na) + νp

( ∑
1≤i≤l
zi=α

ciα
ni−na

)

≤ n1νp(α) + logp

∣∣∣∣ ∑
1≤i≤l
zi=α

ciα
ni−na

∣∣∣∣.
Applying (ii), we obtain that

νp(A) ≤ n1νp(α) + q2
(
log(n1)

)
for an effectively computable q2 ∈ Q[x]. Thus, a necessary condition for (a) to hold is that

n2νp(β)− q1
(
log(n1)

)
νp(β) ≤ n1νp(α) + q2

(
log(n1)

)
which is equivalent to

n2 − n1
νp(α)

νp(β)
≤
q1
(
log(n1)

)
νp(β) + q2

(
log(n1)

)
νp(β)

.

Applying (i), we obtain that

−ξ2 + n1

(
log(α)

log(β)
− νp(α)

νp(β)

)
≤
q1
(
log(n1)

)
νp(β) + q2

(
log(n1)

)
νp(β)

.

By construction of p, the left-hand side of the inequality above grows linearly in n1 while the right-hand side
grows poly-logarithmically. Hence we can compute a bound on n1, from which bounds on every ni can be derived.

We can now finalise the proof of the main result of this section.

Proof. [Proof of Thm. 3.2] Since the class A is closed under intersections, it suffices to consider the case where
s = 1, i.e., the case of a single equation of the form

(5.14) c1z
n1
1 + · · ·+ clz

nl

l = d.

Denote the set of solutions by S. The proof is by induction on l. The statement is immediate for l = 1. Suppose
l ≥ 2. Let N be such that αN , βN > |d|+

∑l
i=1 |ci|. Define

S1 =
{
(n1, . . . , nl) ∈ Nl | ∃a, b : a ̸= b and za = zb and 0 ≤ na − nb ≤ N

}
,

and S2 = S \ S1. Intuitively, for every solution in S2, the two dominant terms among zn1
1 , . . . , znl

l must have
different bases (as otherwise they would be too far apart in magnitude), which will allow us to apply Thm. 5.3.
Further let M be the set of all non-empty proper subsets of {1, . . . , l}, and Sµ for µ ∈ M be the set of all
(n1, . . . , nl) ∈ S such that ∑

i∈µ

ciz
ni
i = 0.

Finally, let S̃ be the set of all (n1, . . . , nl) ∈ Nl such that for all µ ∈ M,∑
i∈µ

ciz
ni
i ̸= 0.

That is, S̃ is the set of all solutions of (5.14) where no proper sub-sum vanishes. We will express S in the form

S = S1 ∪
(
S2 ∩ S̃

)
∪

⋃
µ∈M

Sµ.
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Since each Sµ is exactly the set of solutions to ∑
i/∈µ

ciz
ni
i = d,

in which fewer variables than l appear, we can apply the induction hypothesis. To compute a representation of
S1, we will compute, for every 0 ≤ k ≤ N and distinct 1 ≤ a, b ≤ l with zα = zβ , a representation of the set of all
(n1, . . . , nl) ∈ S satisfying na = nb+k. To do this, we just have to eliminate the variable na. That is, inductively
compute a representation of the set of solutions of(

caz
k
a + cb

)
znb

b +
∑
i ̸=a,b

ciz
ni
i = d

and add the condition na = nb + k.
It remains to describe the structure of S2 ∩ S̃. Let P be the set of all permutations of {1, . . . , l}. For

p := (p1, . . . , pl) ∈ P , define S̃p as the set of all (n1, . . . , nl) ∈ S2 ∩ S̃ that satisfy

z
np1
p1 , z

np2
p2 ≥ z

np3
p3 ≥ · · · ≥ z

npl
pl .

For particular p = (p1, . . . , pl), if zp1
̸= zp2

, then we can invoke invoke Thm. 5.3 to construct a representation

of S̃p On the other hand, if zp1 = zp2 , then by the construction of N , either np1 > np2 + N and hence cp1z
np1
p1

dominates the other summands, or np2
> np1

+ N and the same argument applies. Hence in this case S̃p must
be empty.

6 Handling inequalities

In this section we prove decidability of Problem 3.1. As discussed in Sec. 3, this, in conjunction with Thm. 3.1,
completes the proof of our main decidability result (Thm. 1.1). The following lemma is one of our main technical
tools. In particular, it says that if Az > 0 has a solution, then it has infinitely many solutions.

Lemma 6.1. (Pumping Lemma) Suppose we are given

(a) Q-linear forms h1, . . . , hr in l ≥ 1 variables,

(b) multiplicatively independent α, β ∈ N>1,

(c) z1, . . . , zl satisfying zi ∈ {α, β} for all i and z1 = β,

(d) m1, . . . ,ml ∈ N, and

(e) ε ∈ Q>0.

Write J = {j : hj(zm1
1 , . . . , zml

l ) > 0}. We can compute µ, δ ∈ Q>0 with the following property. Suppose n1 > m1

is such that there exists k ∈ N for which |αk/βn1 −µ| < δ. Then there exist n2, . . . , nl such that for all 1 ≤ j ≤ r,

(i) if j ∈ J , then hj(z
n1
1 , . . . , znl

l ) > 0, and

(ii)

∣∣∣∣hj

(
z
n1
1 ,...,z

nl
l

)
z
n1
1

− hj

(
z
m1
1 ,...,z

ml
l

)
z
m1
1

∣∣∣∣ < ε.

In particular, there exist infinitely many n1 that can be extended to (n1, . . . , nl) satisfying (i) and (ii) for all
1 ≤ j ≤ r.

Proof. By re-ordering z2, . . . , zl, we can without loss of generality assume that z1, . . . , zb = β and zb+1, . . . , zl = α
for some 1 ≤ b ≤ l. For 1 ≤ j ≤ r, write

hj(x1, . . . , xl) = tj(x1, . . . , xb) + sj(xb+1, . . . , xl)

where sj , tj are Q-linear forms. Let ν ∈ Q>0 be such that
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(A) tj(β
m1 , . . . , βmb) + c · sj(αmb+1 , . . . , αml) > 0 for all c ∈ (1− ν, 1 + ν) and j ∈ J , and

(B) ν ·
∣∣∣∣ sj(αmb+1 ,...,αml

)
βm1

∣∣∣∣ < ε for all 1 ≤ j ≤ r.

Choose µ = β−m1 and δ ∈ (0, νβ−m1) ∩Q. It remains to argue the correctness of our choice of µ, δ.
Suppose n1 > m1 satisfies |αk/βn1 −µ| < δ for some k ∈ N. By Thm. 2.1 there exist infinitely many such n1.

Write mα = k and mβ = n1 −m1. We have that∣∣∣∣αmα

βmβ
− 1

∣∣∣∣ = βm1

∣∣∣∣ αk

βn1
− µ

∣∣∣∣ < βm1δ < ν.

For 2 ≤ i ≤ l, define ni = mi +mβ if zi = β and ni = mi +mα if zi = α. Then, for all j ∈ J ,

1

βmβ
hj(z

n1
1 , . . . , zml

l ) =
αmα

βmβ
sj(α

mb+1 , . . . , αml) + tj(β
m1 , . . . , βmb)

> 0

where the inequality follows from (A). This proves (i). To prove (ii), first observe that for 1 ≤ i ≤ l,
zni
i /zn1

1 = ciz
mi
i /zm1

1 where ci = 1 if zi = β and ci = αmα/βmβ of zi = α. Hence

tj(β
n1 , . . . , βnb)

zn1
1

=
tj(β

m1 , . . . , βmb)

zm1
1

for all 1 ≤ j ≤ r. Therefore, for all j,

hj(z
n1
1 , . . . , znl

l )

zn1
1

−
hj(z

m1
1 , . . . , zml

l )

zm1
1

=
sj(α

nb+1 , . . . , αnl)

βn1
− sj(α

mb+1 , . . . , αml)

βm1

=
sj(α

mb+1+mα , . . . , αml+mα)

βm1+mβ
− sj(α

mb+1 , . . . , αml)

βm1

=
sj(α

mb+1 , . . . , αml)

βm1

(
αmα

βmβ
− 1

)
.

It remains to invoke (B). Finally, that there exist infinitely many n1 that can be extended to (n1, . . . , nl) satisfying
(i) and (ii) for all j follows from Thm. 2.1.

Corollary 6.1. Let α, β ∈ N>1 be multiplicatively independent, z1, . . . , zl ∈ {α, β}, A ∈ Zr×l, and b ≥ 0. There
exists z = (zm1

1 , . . . , zml

l ) with m1, . . . ,ml ≥ 0 satisfying Az > 0 if and only if there exists z̃ = (zn1
1 , . . . , znl

l ) with
n1, . . . , nl ≥ 0 satisfying Az̃ > b.

Proof. The “if” direction is trivial as one can take z := z̃. Thus, we focus on the other direction. Let
z = (zm1

1 , . . . , zml

l ) be as above. For 1 ≤ j ≤ r, define the form

hj(x1, . . . , xl) = e⊤j A · (x1, . . . , xl).

Let ε ∈ Q>0 be such that hj(z
m1
1 , . . . , zml

l )/zm1
1 > 2ε for all j. Invoke Thm. 6.1 with the forms h1, . . . , hr and

the values m1, . . . ,ml, ε. We obtain that there exist infinitely many (m̃1, . . . , m̃l) (where m1 can be taken to be

arbitrarily large) such that hj(z
m̃1
1 , . . . , zm̃l

l ) > 0 and

(6.15)

∣∣∣∣∣hj
(
zm̃1
1 , . . . , zm̃l

l

)
zm̃1
1

−
hj
(
zm1
1 , . . . , zml

l

)
zm1
1

∣∣∣∣∣ < ε

for all j. Since hj(z
m1
1 , . . . , zml

l )/zm1
1 > 2ε, inequality (6.15) implies that hj

(
zm̃1
1 , . . . , zm̃l

l

)
> εzm̃1

1 . It remains to

choose (m̃1, . . . , m̃l) with z
m̃1
1 sufficiently large.
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The following is a useful lemma showing how to eliminate a variable na if we can bound the gap between na
and some other (suitable) variable nb.

Lemma 6.2. Let α, β ∈ N>1, z1, . . . , zl ∈ {α, β} for l ≥ 2, and 1 ≤ a, b ≤ l be distinct with za = zb. Suppose we
are given the system

(6.16)

Az > 0

N1 ≤ na − nb ≤ N2

where A ∈ Zr×l for r ≥ 1, z = (zn1
1 , . . . , znl

l ) and N1, N2 ≥ 0. Then we can construct matrices Ãk ∈ Zr×(l−1) for
N1 ≤ k ≤ N2 and y1, . . . , yl−1 ∈ {α, β} with the following property. There exists y =

(
yn1
1 , . . . , y

nl−1

l−1

)
satisfying

n1, . . . , nl−1 ≥ 0 and
N2∨

k=N1

Ãky > 0

if and only if the system (6.16) has a solution.

Proof. Choose (y1, . . . , yl−1) to be any ordering of {z1, . . . , zl} \ {za}. It suffices to construct Ãk for N1 ≤ k ≤ N2

such that Ãk · y > 0 has a solution if and only if

(6.17)

Az > 0

na = nb + k

has a solution. The system (6.17) has a solution if and only if there exist n1, . . . , na−1, na+1, . . . , nl such that

(6.18)
(
Aj,az

k
b +Aj,b

)
znb

b +

l∑
i=1
i ̸=a,b

Aj,iz
ni
i > 0

for all 1 ≤ j ≤ r. Thus we have eliminated the variable na, and can construct Ãk by writing (6.18) for 1 ≤ j ≤ r
in the matrix form.

By Thm. 6.1, to solve the inequality Az > b for b ≥ 0 it suffices to solve Az > 0. Next we show how to do
the latter.

Theorem 6.1. Suppose we are given multiplicatively independent α, β ∈ N>1, z1, . . . , zl ∈ {α, β} for some
l ≥ 1, and A ∈ Zr×l with r > 0. It is decidable whether there exist n1, . . . , nl ∈ N such that Az > 0, where
z = (zn1

1 , . . . , znl

l ).

Proof. The proof is by induction on l. For l = 1, the statement is immediate. Suppose l = 2. Then Az > 0 is
equivalent to zn1

1 /zn2
2 ∈ (c, d) for some c, d ∈ Q ∪ {+∞}. If z1 = z2, then a solution exists if and only zk1 ∈ (c, d)

for some k ∈ Z, which is trivial to determine. If z1 ̸= z2, then applying Thm. 2.1, a solution exists if and only if
d > 0 and (c, d) is non-empty.

Suppose l > 2. If we additionally assume that zna
a = znb

b for some a ̸= b, then we can eliminate at least
one variable and solve the resulting system inductively, as follows. If za = zb, then na = nb, and we can invoke
Thm. 6.2 with N1 = N2 = 0. If za ̸= zb, then by multiplicative independence, na = nb = 0, and we can eliminate
two variables. Hence we have reduced our problem to solving l(l− 1)/2 systems in at most l− 1 variables (which
can be solved inductively), and the system

(6.19)

Az > 0

zna
a ̸= znb

b for all a ̸= b.
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Next, by a case analysis on the largest two terms among zn1
1 , . . . , znl

l and the order of the remaining terms, we
reduce solving (6.19) to solving systems of the form

Az > 0

z
nσ(1)

σ(1) , z
nσ(2)

σ(2) > z
nσ(3)

σ(3) > · · · > z
nσ(l)

σ(l)

z
nσ(1)

σ(1) ̸= z
nσ(2)

σ(2)

where σ is a permutation of {1, . . . , l}. By renaming variables, we can rewrite the above as

(6.20)


Ãz > 0

zn1
1 , zn2

2 > zn3
3 > · · · > znl

l

zn1
1 ̸= zn2

2 .

We will show how to solve such systems.
Suppose z1 = z2. In this case we consider the two possibilities n1 > n2 and n1 < n2. We will only show how

to solve the system

(6.21)

 Ãz > 0

zn1
1 > zn2

2 > zn3
3 > · · · > znl

l

as the same argument applies to the case of n1 < n2. If Aj,1 < 0 for some j, then we can compute N such that
1 ≤ n1 − n2 ≤ N in every solution of (6.21). We can then eliminate the variable n1 using Thm. 6.2, and solve
the resulting system in l − 1 variables inductively. Now suppose Aj,1 ≥ 0 for all j. Let K = {k : Ak,1 = 0} and

hk(x2, . . . , xl) =
∑l

i=2Ak,i ·x for k ∈ K. Inductively solve the system consisting of the inequalities zn2
2 > · · · > znl

l

and hk(z
n2
2 , . . . , znl

l ) > 0 for k ∈ K. If there is no solution, then (6.21) does not have solution either. Otherwise,
a solution to (6.21) can be constructed from the solution to the sub-system by choosing n1 to be sufficiently large.

Suppose z1 ̸= z2; this is the more difficult case. By multiplicative independence, zn1
1 ̸= zn2

2 if and only if at
least one of n1, n2 is non-zero. This is automatically satisfied, as l > 2 and zn1

1 , zn2
2 > zn3

3 . By exchanging z1 and
z2 if necessary, we can assume that z1 ̸= z2 = z3. Note that this implies n2 > n3. Further assume, without loss
of generality, that z1 = α and z2 = β.

By multiplying inequalities with different rational constants if necessary, write the system (6.20) in the form

(6.22)



zn1
1 > pi(z

n2
2 , . . . , znl

l ) for i ∈ I−

zn1
1 < pi(z

n2
2 , . . . , znl

l ) for i ∈ I+

pi(z
n2
2 , . . . , znl

l ) > 0 for i ∈ J

zn1
1 , zn2

2 > zn3
3 > · · · > znl

l

where I−, I+, J are disjoint finite sets and each pi is a Q-linear form. We can assume that I− is non-empty by
adding the identically zero Q-linear form over l− 1 variables if necessary. Suppose I+ is empty. Then inductively
solve the sub-system

(6.23)

 pi(z
n2
2 , . . . , znl

l ) > 0 for i ∈ J

zn2
2 > zn3

3 > · · · > znl

l .

If a solution exists, then a solution to (6.22) can be constructed by choosing n1 to be sufficiently large. Therefore,
we can suppose both I− and I+ are non-empty.
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Let a− be the largest coefficient of zn2
2 of any linear form pi(z

n2
2 , . . . , znl

l ) with i ∈ I− and Ĩ− ⊆ I− all indices
i such that the coefficient of zn2

2 in pi(z
n2
2 , . . . , znl

l ) equals a−. Then one can effectively compute a number N−

such that when n2 − n3 > N−, pi(z
n2
2 , . . . , znl

l ) ≤ pj(z
n2
2 , . . . , znl

l ) for all i ∈ I− \ Ĩ− and j ∈ Ĩ−. Further, for

i ∈ Ĩ−, write pi(z
n2
2 , . . . , znl

l ) = a−z
n2
2 + hi(z

n3
3 , . . . , znl

l ).

Similarly, let a+ be the smallest coefficient of zn2
2 of any linear form pi(z

n2
2 , . . . , znl

l ) with i ∈ I+ and Ĩ+ ⊆ I+
all indices i such that the coefficient of zn2

2 in pi(z
n2
2 , . . . , znl

l ) equals a+. Then one can effectively compute a

number N+ such that pi(z
n2
2 , . . . , znl

l ) ≤ pj(z
n2
2 , . . . , znl

l ) for all i ∈ I+ \ Ĩ+ and j ∈ Ĩ+ when n2 − n3 > N+.

Further, for i ∈ Ĩ+, write pi(z
n2
2 , . . . , znl

l ) = a+z
n2
2 + hi(z

n3
3 , . . . , znl

l ).

For i ∈ J , let ci be the coefficient zn2
2 in pi(z

n2
2 , . . . , znl

l ). Then let J̃ be the subset of J such that ci is zero

and for i ∈ J̃ , write hi(z
n3
3 , . . . , znl

l ) = pi(z
n2
2 , . . . , znl

l ). For some computably large N , the following holds: If

i ∈ J \ J̃ , then when n2 − n3 > N , the sign of pi(z
n2
2 , . . . , znl

l ) equals the sign of ci. Hence, if any ci is negative,
we can reject the input when n2 − n3 > N and all inequalities where ci > 0 are trivially satisfied. By taking N
large enough, we can assume that N ≥ N−, N+.

If we add 0 ≤ n2 − n3 ≤ N to (6.22), we can solve the resulting system by eliminating n2 using Thm. 6.2.
Meanwhile, if n2 −n3 > N , we have reduced (6.22) (and hence our original decision problem) to solving systems
of the following form:

a− +
hi(z

n3
3 , . . . , znl

l )

zn2
2

<
zn1
1

zn2
2

< a+ +
hj(z

n3
3 , . . . , znl

l )

zn2
2

for all i ∈ Ĩ− and j ∈ Ĩ+(6.24)

zn1
1 > zn3

3(6.25)

zn3
3 > · · · > znl

l(6.26)

hi(z
n3
3 , . . . , znl

l ) > 0 for all i ∈ J̃(6.27)

n2 − n3 > N.(6.28)

Note that as N ≥ 0 and z2 = z3, the condition (6.28) implies zn2
2 > zn3

3 . It remains to show how to solve the
system (6.24–6.28).

Case 1. Suppose a− = a+ = a > 0 for some a ∈ Q. This is the only difficult case. Recalling that z2 = z3 = β,
(6.24) is equivalent to

hi(z
n3
3 , . . . , znl

l )

zn3
3

· 1

βn2−n3
<
αn1

βn2
− a <

hj(z
n3
3 , . . . , znl

l )

zn3
3

· 1

βn2−n3
for all i ∈ Ĩ− and j ∈ Ĩ+.

Observe that hi(z
n3
3 , . . . , znl

l ) < hj(z
n3
3 , . . . , znl

l ) is implied by (6.24). Inductively solve the system consisting of

the inequalities hi(z
n3
3 , . . . , znl

l ) < hj(z
n3
3 , . . . , znl

l ) for i ∈ Ĩ− and j ∈ Ĩ+, (6.26), and (6.27). If no solution exists,
then the system (6.24–6.28) does not have a solution either. Otherwise, let (m3, . . . ,ml) be a solution to the
smaller system. We will argue that the system (6.24–6.28) also has a solution.

Define x− = maxi∈Ĩ−

{hi(z
m3
3 ,...,z

ml
l )

z
m3
3

}
, x+ = mini∈Ĩ+

{hi(z
m3
3 ,...,z

ml
l )

z
m3
3

}
and ε = (x+ − x−)/4. From the

construction of m3, . . . ,ml it follows that ε > 0. We will construct a solution (k1, . . . , kl) ∈ Nl to the system
(6.24–6.28). To do this, it suffices to construct (k1, . . . , kl) satisfying (6.25–6.28) with the following additional
properties:

(a) x−+ε

βk2−k3
< αk1

βk2
− a < x+−ε

βk2−k3
;

(b)
hi

(
z
k3
3 ,...,z

kl
l

)
z
k3
3

< x− + ε for all i ∈ Ĩ−;

(c)
hi

(
z
k3
3 ,...,z

kl
l

)
z
k3
3

> x+ − ε for all i ∈ Ĩ+.

As a sanity check on (a), observe that for any d ∈ N,

(x− + ε)
1

βd
< (x+ − ε)

1

βd
.

Next, invoke the Pumping Lemma with m1, . . . ,ml, ε as above and the linear forms
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• −hi(zn3
3 , . . . , znl

l ) + (x− + ε)zk3
3 for all i ∈ Ĩ−,

• hi(z
n3
3 , . . . , znl

l )− (x+ − ε)zk3
3 for all i ∈ Ĩ+,

• hi(z
n3
3 , . . . , znl

l ) for all i ∈ J̃ , and

• zni
i − z

ni+1

i+1 for 3 ≤ i ≤ l − 1

to compute µ, δ > 0. We have that any n3 > m3 satisfying∣∣αñ/βn3 − µ
∣∣ < δ

for some ñ ∈ N can be extended to (n3, . . . , nl) ∈ Nl−2 satisfying (6.26–6.27) and (b–c).

Let ∆ = min
{

a
2 ,

aδ
2µ

}
> 0. It has the properties that ∆ < a and µ∆/a ≤ δ/2. We will need the following

lemma. Intuitively, it will be used to show that we can simultaneously satisfy the Diophantine approximation
conditions arising from the above application of the Pumping Lemma and item (a).

Lemma 6.3. Let a, µ, δ,∆ be as above. Given M ∈ N, we can compute d > M and m ∈ N with the following
property. For all k ≥ m, if there exists ñ ∈ N such that∣∣αñ/βk − a

∣∣ < ∆,

then there exists n̂ ∈ N such that ∣∣αn̂/βk−d − µ
∣∣ < δ.

Proof. Let ξ = δ/(4a). Using Thm. 2.1, choose d,m ∈ N to have the property that d > M and∣∣βd/αm − µ/a
∣∣ < ξ.

Suppose |αñ/βk − a| < ∆ for some ñ ≥ m. Let n̂ = ñ−m. Then∣∣∣∣ αn̂

βk−d
− µ

∣∣∣∣ = ∣∣∣∣αñ

βk
· β

d

αm
− µ

∣∣∣∣
=

∣∣∣∣(αñ

βk
− a

)
βd

αm
+ a

(
βd

αm
− µ

a

)∣∣∣∣
< ∆(ξ + µ/a) + aξ

< 2aξ +
µ∆

a
≤ δ

where the last two inequalities follow from the facts that ∆ < a, µ∆/a ≤ δ/2, and aξ = δ/4.

Choose M to be such that every d > M has the following properties.

(A) d > N ;

(B) |x− + ε|/βd, |x+ − ε|/βd < ∆;

(C) x− + ε+ aβd > 1.

Then apply Thm. 6.3 with this value of M to construct d and m. We will next construct (k1, . . . , kl) ∈ Nl

satisfying (6.25–6.28) and (a-c); recall that such (k1, . . . , kl) will also be a solution to (6.24–6.28). First, choose
k1, k2 such that k2 > max{d,m}, and

x− + ε

βd
<
αk1

βk2
− a <

x+ − ε

βd
.
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By (B), |αk1/βk2 − a| < ∆. Then set k3 = k2 − d. By the construction of d and m via Thm. 6.3, and the fact
that k2 > m, there exists n̂ such that ∣∣αn̂/βk2−d − µ

∣∣ = ∣∣αn̂/βk3 − µ
∣∣ < δ.

Hence, by construction of µ, δ via the Pumping Lemma, we can extend k3 to (k3, . . . , kl) that satisfy (6.26–6.27)
as well as (b–c). Inequality (6.28) and property (a) are satisfied by construction. It remains to show that (6.25)
is satisfied. By (a), αk1 − aβk2 > (x− + ε)βk3 . Hence

αk1 > (x− + ε)βk3 + aβk2 = βk3(x− + ε+ aβd) > βk3 .

Case 2. Suppose a+ > 0 and a+ > a−. Let ε = (a+ − max{a−, 0})/4. Compute M ≥ N such that for all
n2, . . . , nl ∈ N satisfying zn2

2 > zn3
3 > · · · > znl

l and n2 − n3 > M , we have that∣∣∣∣hi(zn3
3 , . . . , znl

l )

zn2
2

∣∣∣∣ < ε for all i ∈ Ĩ− ∪ Ĩ+.

Next, inductively solve the sub-system comprising inequalities (6.26) and (6.27). If there is no solution, then
(6.24–6.28) does not have a solution and we are done. Otherwise, let (k3, . . . , kl) be a solution of the sub-system.
Applying Thm. 2.1, construct k1, k2 ∈ N such that zk1

1 > zk3
3 , k2 − k3 > M , and zk1

1 /zk2
2 ∈ (a− + ε, a+ − ε). Then

(k1, . . . , kl) is a solution of (6.24–6.28).
Case 3. Suppose a+ < a−. Let ε, M , (k3, . . . , kl) be as in Case 2; If no (k3, . . . , kl) exist, once again we are

done. Observe that any (n1, . . . , nl) ∈ Nl such that n2 − n3 > M is not a solution of (6.24–6.28). Hence the
system (6.24–6.28) has a solution if and only if the system comprising (6.24–6.27) and N < n2 − n3 ≤ M has a
solution, which can be checked using Thm. 6.2.

Case 4. a+ = a− = 0. In this case, (6.24) is equivalent to

(6.29) hi(z
n3
3 , . . . , znl

l ) < zn1
1 < hj(z

n3
3 , . . . , znl

l ) for all i ∈ Ĩ− and j ∈ Ĩ+

in which the variable n2 does not appear. Hence we can first inductively solve the sub-system comprising (6.24–
6.27). If a solution exists, then choose n2 to be sufficiently large to satisfy (6.28). Otherwise, conclude that
(6.24–6.28) does not have a solution either.

Case 5. Suppose a+ = 0 > a−. This case is similar to Case 4. Let M be such that for all (n1, . . . , nl), if
n2 − n3 > M then

a− +
hi(z

n3
3 , . . . , znl

l )

zn2
2

< 0 for all i ∈ Ĩ−.

Hence for such (n1, . . . , nl), (6.24) is equivalent to

(6.30) zn1
1 < hi(z

n3
3 , . . . , znl

l ) for all i ∈ Ĩ+.

We therefore solve two systems. First, inductively check if the system comprising (6.25–6.27) and (6.30) has a
solution (k1, k3, . . . , kl). If yes, then choose k2 to be sufficiently large so that (6.28) is satisfied. Thereafter, solve
(6.24–6.28) together with N < n2 − n3 ≤ M using Thm. 6.2. The system (6.24–6.28) has a solution if and only
if at least one of the two systems has a solution.

Case 6. Finally, suppose, a+ < 0. Let M be such that

a+ +
hi(z

n3
3 , . . . , znl

l )

zn2
2

< 0 for all i ∈ Ĩ+

for all n2 − n3 > M . It remains to solve (6.24–6.28) together with N < n2 − n3 ≤M using Thm. 6.2.

We can finally prove decidability of Problem 3.1.
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Proof. [Proof of Thm. 3.1] We proceed by induction on l. If l = 1, then the result is immediate. Suppose l ≥ 2.
Write the system Az > b ∧ Cz = d in the form∨

k∈K

Akz > bk ∧ Ckz = dk

where each bi ≥ 0. By Thm. 6.1, this is equivalent to the system∨
k∈K

Akz > 0 ∧ Ckz = dk.

It suffices to solve each disjunct separately. Fix k ∈ K. If Ck is empty, then we can solve Akz > 0 using Thm. 6.1.
Suppose Ck is non-empty. Then first solve Ckz = dk and write the set of solutions S in the form

S =
⋃
i∈I

⋂
j∈Ji

Xj

as in Thm. 3.2. It suffices to check, for every i ∈ I, whether Akz > 0 has a solution belonging to
⋂

j∈Ji
Xj . Fix

1 ≤ i ≤ I. If Ji is empty, then we simply solve Akz > 0 using Thm. 6.1. In case Ji is non-empty, we will carry
out a variable elimination as follows.

Lemma 6.4. Suppose we are given α, β ∈ N>1, z1, . . . , zl ∈ {α, β}, E ∈ Zr×l, u ∈ Zr, and X1, . . . , XM ⊆ Nl

where each Xj is defined by either

(6.31) nµ(j) = nσ(j) + cj

or

(6.32) nξ(j) = bj

for some bj , cj ∈ N and 1 ≤ ξ(j), µ(j), σ(j) ≤ l satisfying zµ(j) = zσ(j). We can construct λ < l, F ∈ Zr×λ,
v ∈ Zr, and y1, . . . , yλ ∈ {α, β} such that

(6.33) E · (zn1
1 , . . . , znl

l ) > u ∧ (n1, . . . , nl) ∈
⋂

1≤j≤M

Xj

has a solution if and only if F · (yn1
1 , . . . , ynλ

λ ) > v has a solution.

Proof. We proceed by induction on M . Write z = (zn1
1 , . . . , znl

l ). If M = 1, then simply substitute the equation
defining X1 into Ez > u. Suppose M > 1, and consider X1. Let

(y1, . . . , yl−1) = (z1, . . . , zξ(j)−1, zξ(j)+1, . . . , zl)

if X1 is defined by (6.31), and

(y1, . . . , yl−1) = (z1, . . . , zµ(j)−1, zσ(j)+1, . . . , zl)

if it is defined by (6.31). Substitute the equation defining X1 into Ez > u to obtain an equivalent system Ẽy > ũ.
Next, for each k ∈ {1, . . . ,M} \ {ξ(j)}, compute an equation of the form (6.31) or (6.32) defining Yk ⊆ Nl−1 that
is the projection of Xk ∩ X1 onto the appropriate l − 1 variables. If Yk is empty, then (6.33) does not have a
solution, and we can output any system in λ < l variables that does not have a solution. If every Yk is defined
by a consistent equation, then invoke the induction hypothesis with the system Ẽy > ũ and the sets Yk for
k ∈ {1, . . . ,M} \ {ξ(j)}.

Using the lemma above, we can construct λ < l, F ∈ Zr×λ, v ∈ Zr, and y1, . . . , yλ ∈ {α, β} such that

Akz > 0 ∧ (n1, . . . , nl) ∈
⋂
j∈Ji

Xj

has a solution if and only if

(6.34) F · (yn1
1 , . . . , ynλ

λ ) > v

has a solution. Since λ < l, we can use the induction hypothesis to solve (6.34).
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7 Hardness results for the existential fragment of PA(αx, βx)

We now consider the existential fragment of PA(αx, βx) for multiplicatively independent α and β. Unlike the
case for PA(αN, βN), we show that decidability of the existential fragment of PA(αx, βx) would give us algorithms
for deciding various properties of base-α and base-β expansions of a large class of numbers, captured by the next
definition.

Definition 7.1. A sequence (un)
∞
n=0 over N is existentially definable if for every k ≥ 1 there exists an existential

formula φ with k + 1 free variables in the language of ⟨N; 0, 1, <,+, x → αx, x → βx⟩ such that for all
n, y0, . . . , yk−1 ∈ N, φ(n, y0, . . . , yk−1) holds if and only if

un+i = yi

for all 0 ≤ i < k.

The set of definable sequences is closed under many operations. Let (un)
∞
n=0 and (vn)

∞
n=0 be definable, and c ∈ N.

Then (un + vn)
∞
n=0, (c + un)

∞
n=0, (c · un)∞n=0, (α

un)∞n=0, (β
un)∞n=0, (uvn)

∞
n=0 are also definable. Write {x} for

the fractional part of x. Let α, β ∈ N>1 be multiplicatively independent, (An)
∞
n=0 be the base-α expansion of

{logβ(α)}, and (Bn)
∞
n=0 be the base-β expansion of {logα(β)}. Note that logα(β), logβ(α) are both irrational,

and for any γ ∈ N>0 and x ∈ R≥0, the base-γ expansions of x and {x} differ only by a finite prefix.

Proposition 7.1. The sequences (An)
∞
n=0 and (Bn)

∞
n=0 are definable.

Proof. By symmetry, it is sufficient to prove the proposition for (An)
∞
n=0. For x ≥ 1, denote by f(x) the integer

αm such that αm ≤ x < αm+1, noting that f(x) = α⌊x logα β⌋. Fix k ≥ 1, and let w ∈ {0, . . . , α − 1}k. Denote
by λ(w) the natural number whose base-α expansion equals w. That w occurs at position n in (An)

∞
n=0 can be

expressed as

λ(w) < {αn logα β} · αk < λ(w) + 1

which is equivalent to

αλ(w) <

(
βαn

α⌊αn logα β⌋

)αk

< αλ(w)+1.

Recall that

α⌊αn logα β⌋ = f(βαn

),

and for any constant c and a term t, we can express c · t as t+ · · ·+ t︸ ︷︷ ︸
c times

. Hence the formulas

φ(n, y0, . . . , yk−1) := ∃m : αm ≤ βαn

< αm+1 ∧

αλ(y0···yk−1)+mαk

< βαn+k

< αλ(y0···yk−1)+1+mαk

for k ≥ 1 define (An)
∞
n=0 as required.

Observe that we can express whether a pattern w = w0 · · ·wk−1 occurs in an existentially definable sequence
(un)

∞
n=0 using the existential formula ∃n : φ(n,w0, . . . , wk−1), where φ is the formula described in Def. 7.1.

Therefore, decidability of the existential fragment of PA(αx, βx) would entail existence of oracles, among others,
for deciding the following problems.

(A) Whether a given pattern w appears in the base-β expansion of logβ(α).

(B) Whether a given pattern w appears at some index simultaneously in the base-β expansions of logβ(α) and
logα(β).

(C) Whether a given pattern w appears in (Aαn)∞n=0.
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This proves Thm. 1.2 from the Introduction.
To the best of our knowledge, for no base γ ∈ N≥2 and multiplicatively independent α, β ∈ N>1, an algorithm

is known that decides appearance of a given pattern in base-γ expansion of logα(β). It is, however, generally
believed that logα(β) is normal in every base γ–that is, every finite pattern w ∈ {0, . . . , γ − 1} of length k occurs
with frequency 1/γk as a factor in the base-γ expansion of logα(β). See, for example, [1, Introduction]. For a
general exposition to normal numbers, we suggest the reference [7]. Proof of normality for the sequences (An)

∞
n=0

and (Bn)
∞
n=0 would make Problem (A) above trivially decidable. However, normality alone is not strong enough

to deal with Problems (B) and (C): deciding the latter problems in the same way as Problem (A) would require
a far stronger “randomness” property. Even if such properties are proven, we might still be unable to prove
decidability of the full existential fragment of PA(αx, βx).

8 Undecidability of PA(αN, βN)

In this section, let α, β ∈ N>1 be multiplicatively independent. In [12], Hieronymi and Schulz show that the full
theory PA(αN, βN) is undecidable by giving a reduction from the Halting Problem for Turing machines. We now
give an alternative (and shorter) undecidability proof by reducing from the Halting Problem for 2-counter Minksy
machines, which is also undecidable [15, Chapter 14]. Our proof shows that already for formulas containing three
alternating blocks of quantifiers, membership in PA(αN, βN) is undecidable.

A 2-counter Minsky machine is given by R > 0 instructions, numbered 1, . . . , R, and two counters c(1), c(2)

that take values in N. Each instruction except the Rth one is either of the form c(i) = c(i) + 1; GOTO r, or

IF c(i) = 0 GOTO r ELSE c(i) = c
(i)
i − 1; GOTO r̃ where i ∈ {1, 2} and r, r̃ ∈ {1, . . . , R}. The execution starts at

line r = 1 with both counters set to zero, and halts if the line r = R is reached. Denote by c
(n)
i the value of the

counter ci and by rn the current instruction number after n steps. We refer to (c
(1)
n , c

(2)
n , rn) as the configuration

of the machine at time n. The transition function f : N × N × {1, . . . , R} → N × N × {1, . . . , R} of the machine

describes how the configuration is updated. By definition, we have that c
(1)
0 = c

(2)
0 = 0 and r0 = 1.

We will represent the trace of the machine by the sequence

⟨αR+c
(1)
0 , αR+c

(2)
0 , αr0−1, αR+c

(1)
1 , αR+c

(2)
1 , αr1−1, . . .⟩.

Here, αR+c(1)n and αR+c(2)n are at least αR while αrn−1 < αR for every n ≥ 0. Note that every entry in the
sequence is a power of α, and the nth entry is smaller than αR if and only if n ≡ 2 mod 3. It remains to represent
such sequences using arithmetic of powers of α and β.

For x ∈ N, denote by µ(x) the most significant digit in the base-α expansion of x, and by δ(x) the number
αn (whenever it exists) such that the digit corresponding to αn in the base-α expansion of x is the second most
significant digit that is non-zero. For example, if α = 10, then µ(3078) = 3 and δ(3078) = 101. Next, consider
Al,Au ∈ αN,Bl,Bu ∈ βN with Al < Au and Bl < Bu. Let P be the set of all b ∈ βN ∩ [Bl,Bu] such that µ(b) = 1
and δ(b) ∈ [Al,Au]. Write N = |P| − 1, and order the elements of P as B0 < · · · < BN . We say that the tuple
(Al,Au,Bl,Bu) defines the finite sequence (un)

N
n=0 over αN given by un = δ(Bn)/Al. The following result is

Lemma 3.4 in [12], and serves a crucial role in their and our undecidability proofs.

Theorem 8.1. Every finite sequence (un)
N
n=0 over αN is defined by some (Al,Au,Bl,Bu).

By choosing Bl to be the smallest element of P and Bu to be the largest element of P if necessary, we can always
assume that Bl,Bu ∈ P. We will encode the Halting Problem for 2-counter machines by constructing a formula
that expresses existence of a tuple (A1,A2,B1,B2) that defines a sequence corresponding to a finite trace of the
machine ending with the halting instruction. Let Al,Au ∈ αN,Bl,Bu ∈ βN define the sequence (un)

N
n=0, and

P = {B0, . . . , BN} be as above. Define

φAl,Au,Bl,Bu (C,A,B) :=C ∈ αN ∧ A ∈ αN ∩ [Al,Au] ∧ B ∈ βN ∩ [Bl,Bu] ∧
C ≤ B < 2C ∧ A ≤ B − C < α ·A.

This formula states that B ∈ P, which is witnessed by C and A. Here, C is the largest power of α not exceeding
B, the atomic formula C ≤ B < 2C ensures that µ(B) = 1, and A ≤ B − C < α · A ensures that A = δ(B).
If φAl,Au,Bl,Bu (C,A,B) holds, then un = A/Al where n is the position of B in P. The next formula, on input
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B1, B2 that belong to P, returns whether B1 is immediately followed by B2 in the ordering of P.

ψAl,Au,Bl,Bu
(B1, B2) := ∀C,A,B1 < B < B2 : ¬φAl,Au,Bl,Bu

(C,A,B).

We omit the subscript from ϕ and ψ when Al,Au,Bl,Bu are clear from the context. We can now construct a
formula in the language Lα,β that is true if and only if the given 2-counter machine halts. WriteX for the collection

of variables Al,Au,Bl,Bu, B̂1, B̂2, Ĉ0, Ĉ1, Ĉ2, Clast, and Y for the collection of variables C0, A0, B0, . . . , C5, A5, B5.
The variables

• Al,Au,Bl,Bu serve to define a finite sequence over αN,

• Bl, B̂1, B̂2 denote the first three elements of P with witnesses (Ĉ0, α
R · Al), (Ĉ1, α

R · Al), and (Ĉ2,Al),
respectively,

• Bu is the final element of P with the witness (Ĉlast, α
R−1 · Al), and

• C0, A0, B0, . . . , C5, A5, B5 represent arbitrary 6 consecutive terms of the sequence defined by (Al,Au,Bl,Bu),
which correspond to two consecutive configurations of the machine. (Recall that each configuration of the
machine consists of three numbers.)

The required formula is then

∃X : ψ(Bl, B̂1) ∧ ψ(B̂1, B̂2) ∧ φ(Ĉ0, α
R · Al,Bl) ∧ φ(Ĉ1, α

R · Al, B̂1) ∧ φ(Ĉ2,Al, B̂2) ∧
φ(Clast,Bu, α

R−1 · Al) ∧

∀Y :

( 4∧
i=0

ψ(Bi, Bi+1) ∧
5∧

i=0

φ(Ci, Ai, Bi) ∧ A2 < αR · Al

)
⇒ Φ(C0, A0, B0, . . . , C5, A5, B5)

where Φ implements the transition function of the machine. Note that Al,Au,Bl,Bu also appear in the definitions
of φ and ψ. The first row in the formula above fixes the initial configuration of the machine to (0, 0, 1) by requiring
that the first three elements of the sequence defined by (Al,Au,Bl,Bu) must be αR, αR, 1, respectively. The
second row says that the last term in the sequence must be αR−1, which represents the halting instruction.
The condition A2 < αR · Al in the third row, in conjunction with φ(C2, A2, B2), ensures that the term of the
sequence at the position defined by B2 represents an instruction number, as opposed to a counter value. Thus
(C0, A0, B0), . . . , (C5, A5, B5) represent two consecutive configurations of the machine. Regarding Φ, observe that
we can define a function mapping αn to αn+1 (which corresponds to incrementing a counter) by the formula
χ(x, y) := y = x+ · · ·+ x︸ ︷︷ ︸

α times

, and a function mapping αn+1 to αn (corresponding to decrementing a counter) by

χ̃(x, y) := χ(y, x). Finally, to see that the formula above has quantifier alternation depth 2 (i.e., three alternating
blocks of quantifiers), recall that χ1 ⇒ χ2 is equivalent to ¬χ1 ∨ χ2 and the definition of ψ involves a single
universal quantifier.

Acknowledgements. Toghrul Karimov and Joël Ouaknine were supported by the DFG grant 389792660 as
part of TRR 248 (see https://perspicuous-computing.science). Joël Ouaknine is also affiliated with Keble
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[6] J. Richard Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic Quarterly, 6(1–6), 1960.
[7] Yann Bugeaud. Distribution modulo one and Diophantine approximation, volume 193 of Cambridge Tracts in

Mathematics. Cambridge University Press, Cambridge, 2012.
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