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simple, i.e., that the update matrix of the underlying loop be diagonalisable. This assumption is instrumental

in proving our key technical lemma: namely that the sign description of a simple linear recurrence sequence

is almost periodic in the sense of Muchnik, Semënov, and Ushakov. To complement this lemma, we give an
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1 INTRODUCTION

The decidability of monadic second-order logic (mso) over the structure ⟨N, <⟩ is a pillar of the
theory of automated verification [Büchi 1962]. Shortly after Büchi established this result, Elgot and
Rabin [1966] began to investigate unary predicates 𝑷 ⊆ N for which the mso theory of the structure
⟨N, <, 𝑷⟩ remains decidable. For example, decidability is known in case 𝑷 denotes, respectively, the
set of factorial numbers {𝑛! : 𝑛 ∈ N}, the set {𝑛𝑘 : 𝑛 ∈ N} for a fixed but arbitrary natural 𝑘 , and the
set of 𝑘-powers {𝑘𝑛 : 𝑛 ∈ N} for every fixed 𝑘 ∈ N. On the other hand, there are natural examples
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of predicates for which decidability is open and apparently difficult, e.g., for 𝑷 the set of primes,
see [Bateman et al. 1993].1 In general, the decision problem for mso over ⟨N, <, 𝑷⟩ reduces to the
problem of checking membership of a fixed𝜔-word (namely the characteristic word of the predicate
𝑷 ) in an 𝜔-regular language L that represents the formula whose truth is to be determined.
Semënov [1984] gave a characterisation of those predicates 𝑷 for which the mso theory of
⟨N, <, 𝑷⟩ is decidable. This line of work was continued in [Carton and Thomas 2002; Rabinovich
2007]. An important sufficient condition for decidability is that the characteristic sequence of 𝑷
be effectively almost periodic: a notion originating in symbolic dynamics [Morse and Hedlund
1938; Muchnik et al. 2003]. Roughly speaking, a sequence is almost periodic if for any pattern that
occurs infinitely often, the gaps between successive occurrences are bounded. A classical example
of an almost periodic sequence is the Thue-Morse sequence, i.e., the sequence whose 𝑛-th entry is
the parity of the number 1’s in the binary expansion of 𝑛. Another example is the characteristic
sequence of the predicate 𝑷 = {𝑛 ∈ N : sin(𝑛𝜃 ) > 0} for a fixed real number 𝜃 . The notion of
almost periodicity will be instrumental for the results of this paper.

From the point of view of program analysis, it is natural to consider extensions of msowith unary
predicates that encode properties of program variables at each time step. For example, consider a
linear loop

while true do
©­«
𝑥

𝑦

𝑧

ª®¬
← ©­«
−2 4 0
4 0 0
1 0 0

ª®¬
©­«
𝑥

𝑦

𝑧

ª®¬
.

Given initial values of the program variables, suppose we want to determine whether the variable 𝑥
is ultimately increasing. Noting that variable 𝑧 stores the previous value of 𝑥 , we equivalently want
to determine ultimate positivity of the sequence ⟨𝑢𝑛⟩𝑛∈N defined by 𝑢𝑛 := 𝑥𝑛 − 𝑧𝑛 , where 𝑥𝑛 and 𝑧𝑛
are the respective values of variables 𝑥 and 𝑧 after 𝑛 executions of the loop body. This property can
be written in mso as ∃𝑚 ∀𝑛 · (𝑛 ≥ 𝑚 ⇒ 𝑷 (𝑛)) where 𝑷 = {𝑛 ∈ N : 𝑢𝑛 > 0}. Clearly we can use
second-order quantification in mso to express more complex properties, e.g., that variable 𝑥 only
increases on even steps of the execution.

In the above example, the sequence u = ⟨𝑢𝑛⟩𝑛∈N satisfies the recurrence 𝑢𝑛+2 = −2𝑢𝑛+1 + 16𝑢𝑛 . In
general, for any linear loop and any polynomial function on the program variables, the sequence of
values assumed by the function along an infinite execution of the loop is a linear recurrence sequence
(lrs). This observation motivates the central object of study in this paper: the decidability of the mso
theory of the structure Su := ⟨N, ≤, 𝑷 ,𝒁 ,𝑵 ⟩ associated with an lrs u, where 𝑷 := {𝑛 ∈ N : 𝑢𝑛 > 0},
𝒁 := {𝑛 ∈ N : 𝑢𝑛 = 0}, and 𝑵 := {𝑛 ∈ N : 𝑢𝑛 < 0}. This structure can be represented by the sign
description ⟨sgn(𝑢𝑛)⟩𝑛∈N ∈ {+, 0,−}𝜔 of u, which is defined in the obvious way.
Computational problems concerning sign descriptions of lrs are notoriously difficult. For ex-

ample, decidability of the Skolem Problem łdoes a given lrs have a zero term?ž has been open for
many decades. Decidability of the Positivity Problem: łare all terms of a given lrs positive?ž is
likewise a longstanding open problem [Ouaknine and Worrell 2013; Salomaa and Soittola 1978]. In
view of these difficulties, we restrict attention to the class of simple lrs, i.e., those such that the
characteristic polynomial of the defining recurrence has simple roots. In terms of our motivating
example of linear loops, the associated lrs are simple whenever the update matrix of the loop is
diagonalisable. Our main technical lemma shows that the sign description of every simple lrs is
(effectively) almost periodic. We moreover give an example showing that almost periodicity fails
without the assumption of simplicity.

1Note that the twin primes conjecture from number theory (that there are infinitely many pairs of primes that differ by

two) can be formulated in mso with the primality predicate.
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Using the fact that simple lrs have effectively almost periodic sign descriptions, we establish
our first main result:

Theorem 1.1. For every fixed simple lrs u of rational numbers, it is decidable whether the sign
description of u lies in a given 𝜔-regular language L.

This result yields a large new class of structures with a decidable mso theory, namely each
structure Su for u a simple lrs.

We emphasize that Theorem 1.1 states the existence of a decision procedure for every fixed lrs

u. For our application of model checking linear loops, it is more natural to consider the lrs u as
part of the input to the decision procedure, since the definition of u depends on the loop. This leads
to our second main result:

Theorem 1.2. Given a prefix-independent 𝜔-regular language L and a simple lrs u, it is decidable
whether the sign description of u belongs to L.

This result allows us to model check prefix-independent mso properties that refer to the signs of
variables in linear loops. Recall here that a prefix-independent 𝜔-regular language is one such that
any two words with a common (infinite) suffix are either both in the language or both not in the
language. Equivalently, such a language is a finite union of languages of the form Σ

∗L𝜔 for regular
L ⊆ Σ

∗. Intuitively, prefix-independent languages specify asymptotic properties of 𝜔-words, such
as that a certain pattern occurs infinitely often or that some property eventually holds forever. The
restriction to prefix-independent properties in Theorem 1.2 is connected to a non-uniformity in
the proof that the sign description of a simple lrs is effectively almost periodic (cf. Theorem 3.1
and Remark 3.1), which in turn is due to our use of ineffective number-theoretic bounds. Note
that the ability to handle arbitrary 𝜔-regular languages in Theorem 1.2 would immediately entail
decidability of both Skolem’s Problem and the Positivity Problem for simple lrs.

The sign description is a coarse abstraction of a given sequence. However the same techniques
that provide us with Theorem 1.2 can be applied to substantially more powerful abstractions, as we
illustrate below once more in the context of analysing the behaviour of a linear loop. Let us assume
that such a loop operates over variables 𝑥1, . . . , 𝑥𝑚 ; writing v for the column vector of variables
[𝑥1, . . . , 𝑥𝑚]𝑇 , we represent our loop by the expression

while true do v← 𝑀v ,

where 𝑀 is a square matrix of dimension𝑚 ×𝑚. (Note that we have written the guard as ‘true’
since we are only interested in the properties of infinite executions of loops.) Let us now assume
that we are given 𝑘 semi-algebraic predicates over variables 𝑥1, . . . , 𝑥𝑚 , i.e., Boolean combinations
of polynomial inequalities on these variables, and let us denote these predicates as 𝑷 1, . . . , 𝑷𝑘 ; we
shall naturally identify such predicates with the semi-algebraic subsets of R𝑚 that they represent.
Now given any𝑚 initial values 𝑎1, . . . , 𝑎𝑚 for the variables 𝑥1, . . . , 𝑥𝑚 , executing our loop gives rise
to an infinite sequence of points (or orbit) ⟨v0, v1, . . .⟩ in R𝑚 : we have v0 = [𝑎1, . . . , 𝑎𝑚]𝑇 , and for
all 𝑖 ≥ 0, vi+1 = 𝑀vi. These are, of course, the infinite sequence of values that the loop variables
take as the loop forever unwinds over time. Note that predicate 𝑷 𝑖 is satisfied at time 𝑛 iff vn ∈ 𝑷 𝑖 .
Finally, let us assume that we are given a prefix-independent mso property over predicates

𝑷 1, . . . , 𝑷𝑘 , describing some specification that the infinite unwinding of the loop, given the initial
assignment of values to the variables, may or may not satisfy. Theorem 6.4 asserts that, provided that
the matrix𝑀 is diagonalisable, the model-checking problem of whether the orbit of the loop satisfies
the given mso property is decidable. As for the sign description of lrs, the proof technique relies on
almost periodicity and Theorem 6.4 is proved in a manner similar to Theorem 1.2; see Section 6.2.
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Related Work. There have been a number of previous works that introduce symbolic semantics
for linear systems, including linear loops and Markov chains, and give model checking procedures
for this semantics. But the current paper is the first that establishes and benefits from almost
periodicity of a symbolic semantics.
The paper [Karimov et al. 2020] examines a version of the decision problem considered in this

paper, but with ltl formulas rather than mso formulas, and restricting to recurrences of order
at most 3 (corresponding to linear loops with at most 3 variables). In addition to the restriction
on order, a major difference with the present paper is that [Karimov et al. 2020] does not use the
notion of almost periodic sequences. Intuitively the model checking problem can be handled more
directly there by exploiting the simplicty of ltl.
The paper [Beauquier et al. 2006] considers mso over ⟨N, <⟩ augmented with a probability

quantifier. The semantics of the probability quantifier is defined relative to trajectories of a finite-
state Markov chain. The setting is close to the present paper: Markov chains are a special case of
linear loops, and the probability quantifier corresponds to having predicates that report the sign
of an lrs at each index. However the results of [Beauquier et al. 2006] only apply in situations
in which truth values of formulas are ultimately periodic. By working with the notion of almost
periodicity we avoid the need for such semantic restrictions. Interestingly, [Beauquier et al. 2006,
Section 8] notes the close relationship to the model checking problem for their logic and the Skolem
Problem for linear recurrences.
Another similar work is [Agrawal et al. 2015], which considers the problem of model checking

ltl formulas on a symbolic dynamics of a Markov chain that is induced by a finite polyhedral
partition of the space of probability distributions on the states. Again, the key issue is ultimate
periodicity: the authors of [Agrawal et al. 2015] note that their symbolic dynamics is not ultimately
periodic in general, and therefore switch their attention of a notion of approximate model checking.
Decision problems on the positivity of lrs have been studied in [Ouaknine and Worrell 2013,

2014a,b]. Our second main result, Theorem 1.2, generalises the fact that it is decidable whether a
simple lrs is ultimately positive [Ouaknine and Worrell 2014b]. In terms of the structure of the
sign description of an lrs, [Bell and Gerhold 2007] show that the positivity set of an lrs (the set of
indices where the lrs is positive) has a density and characterises the numbers that can appear as
such a density. A classical result of Skolem, Mahler, Lech states that the set of zeros of an lrs over
a field of characteristic zero is ultimately periodic.

Organisation. The rest of the paper is organised as follows. In Section 2, we give the main
definitions and discuss two classical results: the Skolem-Mahler-Lech theorem and Semënov’s
theorem. We sketch the plan for the proof of the main theorem in Section 2.2. The central technical
theorem is proved in Section 3. In the last subsection, properties related to effectiveness of the
objects defined in the proof are given. In Section 4 we show that the sign descriptions of general lrs
need not be almost periodic. This section is independent and can be read out of order. In Section 5
we give the procedure and in Section 6 we show how the proof can be adapted to more complex
predicates instead of sign descriptions. The pertinent notions of the first-order theory of real closed
fields and related proofs are presented in Appendix A.

2 SIGN DESCRIPTIONS OF LINEAR RECURRENCE SEQUENCES

A linear recurrence sequence (lrs) is a sequence u = ⟨𝑢⟩𝑛∈N of rational numbers that satisfies a
recurrence relation

𝑢𝑛 = 𝑎1𝑢𝑛−1 + 𝑎2𝑢𝑛−2 + · · · + 𝑎𝑑𝑢𝑛−𝑑 , 𝑛 > 𝑑, (1)
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where 𝑎1, . . . , 𝑎𝑑 are rational constants and 𝑑 ∈ N is the order of recurrence. Clearly such a sequence
is determined by the recurrence and the initial values 𝑢1, . . . , 𝑢𝑑 .

The characteristic polynomial of the recurrence (1) is

𝑓 (𝑥) def= 𝑥𝑑 − 𝑎1𝑥𝑑−1 − · · · − 𝑎𝑑−1𝑥 − 𝑎𝑑 .
We refer to the roots of 𝑓 as the characteristic roots of the recurrence. It is well known that an lrs u

admits a unique representation as an exponential polynomial

𝑢𝑛 =

𝑚∑︁
𝑖=1

𝐶𝑖 (𝑛)Λ𝑛𝑖 ,

where Λ1, . . . ,Λ𝑚 are the distinct characteristic roots and the 𝐶𝑖 are polynomials. Both the roots
and the coefficients of the polynomials 𝐶𝑖 are in general complex algebraic numbers.
An lrs satisfies a unique recurrence of minimum order. We say that the recurrence is simple if

the characteristic roots of this recurrence are simple. Equivalently u is simple if the coefficients 𝐶𝑖
in its representation as an exponential polynomial are constant polynomials.

Let u = ⟨𝑢⟩𝑛∈N be a linear recurrence sequence. Define 𝜁 , an infinite word over the alphabet {0,±},
as:

𝜁𝑛
def
= 0 ⇔ 𝑢𝑛 = 0.

In other words, we abstract away the terms of the sequence and only keep the information of
whether or not they are equal to zero. The celebrated Skolem-Mahler-Lech theorem says that the
word 𝜁 is ultimately periodic.

Theorem 2.1 (Skolem-Mahler-Lech, [Everest et al. 2003, Theorem 2.1]). For any linear
recurrence sequence u the word 𝜁 is of the form

𝜁 = 𝑤1𝑤
𝜔
2 ,

for𝑤1,𝑤2 ∈ {0,±}∗.

The word𝑤2 can be computed [Berstel andMignotte 1976] from the description of u; it is however
a longstanding open problem whether the same is true for the prefix𝑤1.

In this paper we are interested in a slightly finer analysis:

Definition 2.2 (Sign description). The sign description of u is the infinite word 𝜎 over the alpha-
bet {−, 0, +} defined as:

𝜎𝑛
def
= sgn(𝑢𝑛),

where for 𝑥 ∈ R,

sgn(𝑥) def=


+ if 𝑥 > 0,

− if 𝑥 < 0,

0 otherwise.

Unlike 𝜁 , the word 𝜎 is not ultimately periodic in general, as the following example shows.

Example 2.3. Let u be an lrs given in the matrix form2 as:

𝑢𝑛 =
(
0 1

) (
𝑎 𝑏

−𝑏 𝑎

)𝑛 (
0
1

)
, 𝑎, 𝑏 ≠ 0, and 𝑎2 + 𝑏2 = 1.

2This is an equivalent formulation for lrs, inter-reducible in polynomial time with the definition that we gave in the

beginning of this section; see [Everest et al. 2003, Section 1.1.12].
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Putting the square matrix above in Jordan normal form and using Euler’s formula, we can deduce
that 𝑢𝑛 = cos(𝑛𝜑), where 𝜑 = arg(𝑎 + i𝑏). The set

{𝑎 + i𝑏 : 𝑎, 𝑏 ∈ Q, 𝑎, 𝑏 ≠ 0 and 𝑎2 + 𝑏2 = 1},
consists of algebraic numbers of degree two. The only roots of unity of degree two are the third,
fourth and sixth primitive roots of unity, which are either ±i or have irrational imaginary part.
Consequently, none of the elements of the set above are a root of unity and therefore, 𝜑 = arg(𝑎+ i𝑏)
is not a rational multiple of 𝜋 .
If the sign description 𝜎 were to be ultimately periodic, then there would be some 𝑝 ∈ N and

𝑠 ∈ {−, 0, +} such that 𝜎𝑛𝑝 = 𝑠 for all 𝑛 ∈ N. This is not the case, because 𝑝𝜑 is not a rational
multiple of 𝜋 , from which it easily follows (e.g., using Kronecker’s theorem for inhomogeneous
Diophantine approximation, Theorem 3.5) that {cos (𝑛(𝑝𝜑)) : 𝑛 ∈ N} is dense in [−1, 1].

However, in the case of simple lrs, the sign description is well-behaved. In the sequel we will
prove that simple lrs have almost periodic sign descriptions.

2.1 Almost Periodic Words

We say that the pattern 𝑤 ∈ Σ
∗ occurs in a word 𝛼 ∈ Σ

∗ ∪ Σ
𝜔 if 𝑤 occurs as an infix of 𝛼 . More

specifically, we say that𝑤 occurs in position 𝑝 of 𝛼 if

𝑤 = 𝛼𝑝𝛼𝑝+1 · · ·𝛼𝑝+|𝑤 |−1 .

Definition 2.4 (Almost periodic). An infinite word 𝛼 ∈ Σ
𝜔 is almost periodic if for every word

𝑤 ∈ Σ∗, there exists 𝑝 ∈ N such that either:

• 𝑤 does not occur in 𝛼 after the position 𝑝 , or
• 𝑤 occurs in every factor of 𝛼 of length 𝑝 , i.e. for every 𝑛 ∈ N,𝑤 occurs in

𝛼𝑛𝛼𝑛+1 · · ·𝛼𝑛+𝑝 .

Intuitively, an almost periodic word is one with the property that any pattern that occurs infinitely
often, does so in such a manner that the gaps between successive ocurrences of the pattern have
bounded length. A typical non-example of almost periodic words is:

𝑎𝑏𝑎2𝑏𝑎3𝑏𝑎4𝑏 · · · .

Here the letter 𝑏 occurs infinitely often, but the distances between consecutive occurrences are
unbounded.

Almost periodic words are sometimes referred to in the literature as uniformly recurrent sequences,
or minimal sequences. As examples of almost periodic words we have: ultimately periodic words,
Sturmian words, and some morphic sequences such as the Thue-Morse sequence. Almost-periodic
words enjoy good closure properties, low Kolmogorov complexity, etc.; [Muchnik et al. 2003] is an
extensive study on the combinatorics of these words.

An almost periodic word 𝛼 ∈ Σ𝜔 is said to be effectively almost periodic if, given a pattern𝑤 ∈ Σ∗,
we can decide whether or not𝑤 occurs infinitely often in 𝛼 , and, if so, we can compute an upper
bound 𝑝 between successive occurrences of𝑤 in 𝛼 . If the pattern does not occur infinitely often on
the other hand, we can compute an upper bound on the threshold after which the pattern does
not occur. Equivalently, 𝛼 is effectively almost periodic if there is a procedure that inputs a pattern
𝑤 ∈ Σ∗ and outputs an upper bound on the number 𝑝 in Definition 2.4.

A key property of effectively almost periodic words is that they have a decidable monadic
second-order theory. More specifically, a word 𝛼 ∈ Σ𝜔 determines a structure that expands (N, <)
with a monadic predicate for every letter in Σ that denotes the positions in 𝛼 where the letter
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occurs. Formulas of mso over this structure are formulas of predicate logic with both first-order
variables and monadic second-order variables. Then we have:

Theorem 2.5 ([Semënov 1984, Theorem 1]). For any effectively almost periodic word 𝛼 , the mso
theory of (N, <) expanded with unary predicates that define 𝛼 , is decidable.

One of the main results of this paper is that the sign description of a given simple lrs is an
effectively almost periodic word. This effectiveness, however, is non-uniform, in the sense that we
do not have a single algorithm that takes an lrs as input and witnesses the effectiveness of the
corresponding sign description. Indeed such a uniform effectiveness result would allow to decide
Skolem’s Problem (“Does an lrs have a zero term?ž) and the Positivity Problem (“Are all terms
of an lrs positive?ž), both of which are open for simple lrs. This fact leads us to formulate and
prove a variant of Theorem 2.5 that assumes a weaker notion of effectiveness that talks only about
the asymptotic properties of the word. Specifically this notion asks to compute an upper bound
on the gap between all but finitely many succcessive occurrences of an infinitely recurring factor.
Naturally, for such sequences we correspondingly weaken the conclusion of Theorem 2.5: we ask
to decide any prefix-independent 𝜔-regular property of the sign descriptions.

2.2 Proof Sketch

The proof of the main theorem, Theorem 1.2, can be conceptually divided as follows: (a) we observe
that simple linear recurrence sequences admit almost periodic sign descriptions, (b) we prove
that there is a procedure that given a pattern, outputs a bound on distances between consecutive
occurrences (in the sign description); and finally exploiting the previous procedure we provide
(c) an algorithm that inputs a prefix-independent 𝜔-regular language L (as a Müller automaton)
and a simple lrs, and decides whether its sign description belongs to L.

(a) To show almost periodicity, the general idea is to construct a much simpler dynamical system
and prove that its sign description coincides with that of the given sequence in all but finitely many
positions. The ambient space of this dynamical system (described in Section 3.2) is a compact subset
𝑋 of T𝑑 (where T is the unit circle on the complex plane). Its dynamics is given by a continuous
function mapping 𝑋 to itself. This system is easier to analyse: for every sign pattern there exists an
open subset 𝑌 of 𝑋 such that when the system enters it, the next signs that it outputs form the
pattern. Furthermore, using the compactness of 𝑋 we can prove that from everywhere in 𝑋 , the
system has to enter 𝑌 in a bounded number of steps (provided 𝑌 is non-empty). This bound will
suffice for the distance between consecutive occurrences of the pattern.
The reason why the sign sequences of the given system and the simpler one above coincide, in

all but finitely many positions, is laid in Section 3.1. It amounts to proving that the asymptotic
behavior of the sequence is determined by its dominant terms (those made from characteristic
roots with maximal modulus). To lower bound these terms, we will apply a theorem from algebraic
number theory.
(b) The procedure for calculating the distances between occurrences of patterns, manipulates

formulas of first order logic of the field of real numbers. We observe that for every pattern, the
subsets 𝑌 above, are semi-algebraic (i.e. they are definable in the logic), and that furthermore
the formulas can be effectively computed (Lemma 3.10). Using Tarski’s procedure we can check
whether 𝑌 is non-empty, i.e. whether the pattern occurs infinitely often in the sign description, and
if so, calculate the bound between consecutive occurrences by querying whether the bound 𝑏 is
sufficient, for successive 𝑏 ∈ N (Proposition 5.3).
(c) We gather all the relevant properties of the sign description in Proposition 5.3, abstracting

away linear recurrence sequences; so that the algorithm that is presented in Section 5 would work
for any infinite word having the properties listed in Proposition 5.3.
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Because it is simpler for the proofs, the algorithm will manipulate elements of a certain finite
monoid which is equivalent to the given automaton. The sign description 𝜎 has the property
that one can choose finite words𝑤1, . . . ,𝑤𝑘 such that Ð except for a finite prefix Ð 𝜎 is obtained
by intercalating the words𝑤1, . . . ,𝑤𝑘 . As a consequence of the automaton being finite, for some
well chosen and sufficiently long words 𝑤1, . . . ,𝑤𝑘 , we can prove that it does not matter for the
acceptance how they are arranged in the suffix of 𝜎 . The algorithm will construct these sufficiently
long words and multiply the associated elements of the monoid to decide whether the set of states
that is seen infinitely often is final.

3 SIMPLE LRS HAVE ALMOST PERIODIC SIGN DESCRIPTIONS

In this section we prove our first main result:

Theorem 3.1. The sign description of a simple linear recurrence sequence is almost periodic.

Fix a simple lrs u. We first give a brief informal overview of the proof.3 To set up the idea of the
proof, recall that u admits a representation as an exponential polynomial

𝑢𝑛 =

𝑑∑︁
𝑖=1

𝑐𝑖 Λ
𝑛
𝑖 , (2)

where 𝑐𝑖 ,Λ𝑖 are non-zero algebraic numbers, with Λ𝑖 being characteristic roots of the recurrence
defining u. Now for each 𝑖 ∈ {1, . . . , 𝑑}, we factor each Λ𝑖 as the product Λ𝑖 = 𝜌𝑖𝜆𝑖 of a positive real
number 𝜌𝑖 > 0 and a complex number 𝜆𝑖 of absolute value 1. The first key idea is that for𝑛 sufficiently
large, the sign of 𝑢𝑛 is determined by (𝜆𝑛1 , . . . , 𝜆𝑛𝑑 ), i.e., the absolute values of the characteristic roots
can be ignored for large 𝑛. The second key idea is that the set {(𝜆𝑛1 , . . . , 𝜆𝑛𝑑 ) : 𝑛 ∈ N} is the orbit of
a point under a homeomorphism of a compact topological space, namely the 𝑑-fold product of the
unit circle T in the complex plane. This transports us to a classical situation in symbolic dynamics.

As a preliminary step, we first decompose u as the interleaving of several so-called non-degenerate
subsequences. Recall here that an lrs is said to be non-degenerate if no quotient of two distinct
characteristic roots is a root of unity. To decompose u, as given in (2), we take 𝑃 ∈ N to be the least
common multiple of the orders of all roots of unity among the quotients Λ𝑖/Λ 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑑 ;
then for all ℓ ∈ N, 0 ≤ ℓ < 𝑃 , the sequence

u(ℓ)
def
= ⟨𝑢ℓ+𝑛𝑃 ⟩𝑛∈N,

is a non-degenerate lrs with characteristic roots among {Λ𝑃1 , . . . ,Λ𝑃𝑑 }. We factor the characteristic
roots as

𝜌𝑖𝜆𝑖
def
= Λ

𝑃
𝑖 𝜌𝑖 ∈ R+, |𝜆𝑖 | = 1, 1 ≤ 𝑖 ≤ 𝑑. (3)

The rationale behind this decomposition is that non-degenerate sequences have the following
property:

Proposition 3.2 ([Shapiro 1959, Corollary 2.1]). A non-degenerate lrs either has finitely many
zeros, or it is identically zero.

Next we will demonstrate that the sign description of u(ℓ) is asymptotically the same as that of a
certain linear function on (𝜆𝑛1 , . . . , 𝜆𝑛𝑑 ), i.e., it does not depend on the moduli 𝜌𝑖 . We achieve this by
applying the work of Evertse, van der Poorten, and Schlickewei on bounds of sums of S-units.

3In fact the technical details, below, will depart slightly from this overview due to the need to handle the issue of degeneracy

of lrs.
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3.1 A Lower Bound on Sums of 𝑆-Units

We will prove the following lemma.

Lemma 3.3. Let v
def
= u(ℓ) , for some 0 ≤ ℓ < 𝑃 . There exist 𝑧1, . . . , 𝑧𝑑 ∈ C such that

∑𝑑
𝑖=1 𝑧𝑖𝜆

𝑛
𝑖 is real

for all 𝑛 ∈ N, and furthermore exists 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0,

sgn(𝑣𝑛) = sgn

(
𝑑∑︁
𝑖=1

𝑧𝑖𝜆
𝑛
𝑖

)
.

Remark 3.1. There is no known effective means of determining the constant 𝑛0 above. For such a
method we would need an effective version of Roth’s theorem (consult Section 2.4 in [Everest et al.
2003]). It is as a consequence of the ineffectiveness of this constant that we are forced to restrict
to prefix-independent 𝜔-regular properties in the main theorem. It is worth noting, however, that
in the presence of at most three dominant roots, this constant is effective [Tijdeman et al. 1984,
Theorem 1].

The principal ingredient in the proof of Lemma 3.3 is the aforementioned lower bound on sums
of 𝑆-units. We introduce this theorem first.

Let 𝐾 be the splitting field of the characteristic polynomial, that is the field extension of Q gener-
ated by the characteristic roots Λ1, . . . ,Λ𝑑 . The elements of 𝐾 that are roots of monic polynomials
in Z[𝑥] (i.e., with leading coefficient one) form a subring, known as the algebraic integers of 𝐾 ,
denoted O𝐾 . Further, O𝐾 is a Dedekind ring, so for every 𝑥 ∈ O𝐾 , the principal ideal generated by
𝑥 can be written down as a product of a finite number of prime ideals. Let 𝑆 be a finite set of prime
ideals. An 𝑆-unit is any 𝑥 ∈ O𝐾 such that the prime divisors of the principal ideal of 𝑥 are in 𝑆 .

If 𝐾 has degree 𝑟 over Q then there are 𝑟 field embeddings from 𝐾 to C, denoted ℎ1, . . . , ℎ𝑟 .

Theorem 3.4 (Evertse, van der Poorten and Schlickewei, see e.g.[Evertse 1984, Theorem

2]). Let 𝑆 be a finite set of prime ideals in O𝐾 , and𝑚 ∈ N. Then for all 𝜖 > 0 there exists 𝐶 > 0,
depending on 𝜖 and 𝑚, such that for any set of 𝑆-units 𝑥1, . . . , 𝑥𝑚 ∈ O𝐾 , with the property that∑
𝑖∈𝐼 𝑥𝑖 ≠ 0, 𝐼 ⊆ {1, 2, . . . ,𝑚}, we have �����

𝑚∑︁
𝑖=1

𝑥𝑖

����� ≥ 𝐶𝑋𝑌−𝜖 ,
where 𝑋

def
= max{|𝑥𝑖 | : 1 ≤ 𝑖 ≤ 𝑚}, and 𝑌 def

= max{|ℎ 𝑗 (𝑥𝑖 ) | : 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟 }.
We show how we can apply Theorem 3.4 to our setting.
Let ℓ ∈ N, 0 ≤ ℓ < 𝑃 , and v = u(ℓ) . Assume that v is not identically zero, then there exists

𝐽 ⊆ {1, . . . , 𝑑}, and 𝑏 𝑗 ∈ C, 𝑗 ∈ 𝐽 with 𝑏 𝑗 ≠ 0 such that

𝑣𝑛 =

∑︁
𝑗 ∈𝐽

𝑏 𝑗 (𝜌 𝑗𝜆 𝑗 )𝑛 .

Let 𝐽 ′ ⊆ 𝐽 be the dominant roots (with modulus 𝜌) among the roots in 𝐽 and write

𝑣𝑛 =

∑︁
𝑗 ∈𝐽 ′

𝑏 𝑗 (𝜌𝜆 𝑗 )𝑛

︸         ︷︷         ︸
𝐷 (𝑛)

+
∑︁
𝑗 ∈𝐽 \𝐽 ′

𝑏 𝑗 (𝜌 𝑗𝜆 𝑗 )𝑛

︸             ︷︷             ︸
𝑅 (𝑛)

.

We will use Theorem 3.4 to show that the sign of v asymptotically depends only on that of 𝐷 (𝑛),
by noticing that 𝐷 (𝑛) is a sum of S-units.
For lrs over integers, the roots of the characteristic polynomial, as well as the analogue of

the constants 𝑐𝑖 are algebraic integers in the respective splitting field. We have defined u over
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rationals, however this can be sidestepped by observing that there exist natural numbers 𝑎 and 𝑏
such that the entries of the sequence4 ⟨𝑎𝑏𝑛𝑢𝑛⟩𝑛∈N are all integers, and furthermore it has the same
sign description as u. Consequently we can assume that numbers 𝑐𝑖 and Λ𝑖 in the exponential
polynomial description (2) are algebraic integers in 𝐾 . Since O𝐾 is a ring, it follows that the terms
of the sum 𝐷 (𝑛) above all belong to O𝐾 .

Define 𝑆 to be the set of prime divisors of (𝜌 𝑗𝜆 𝑗 ) and prime divisors of 𝑏 𝑗 . By definition of 𝑆 all
(𝜌 𝑗𝜆 𝑗 ), 𝑏 𝑗 are 𝑆-units and consequently 𝐷 (𝑛) is a sum of 𝑆-units. To apply Theorem 3.4, we need
now only show that any sub-sum of 𝐷 (𝑛) vanishes for only finitely many 𝑛. To see this, observe
that any sub-sum of 𝐷 (𝑛) is itself a non-degenerate lrs, moreover we have assumed that it is not
identically zero (because 𝑏 𝑗 ≠ 0); as a consequence of Proposition 3.2, it cannot vanish for infinitely
many 𝑛.

We now apply Theorem 3.4 to the sum of 𝑆-units 𝐷 (𝑛). In this situation, for all but finitely many
𝑛, we clearly have 𝑋 = |𝑏 |𝜌𝑛 for some 𝑏 = 𝑏 𝑗 , 𝑗 ∈ 𝐽 ′. Since for every root (𝜌 𝑗𝜆 𝑗 ) there is a field
embedding among ℎ1, . . . , ℎ𝑟 that fixes it, for all but finitely many 𝑛, we have 𝑌 ≥ |𝑏 ′ |𝜌𝑛 , for some
constant 𝑏 ′. It follows that for every 𝜖 > 0 there exists 𝐶 > 0 such that for all but finitely many 𝑛,
we have

|𝐷 (𝑛) | ≥ 𝐶𝜌𝑛 (1−𝜖) . (4)

We are now ready to prove Lemma 3.3.

Proof of Lemma 3.3. If v is identically zero the lemma clearly holds. Assume that v is not
identically zero. Since 𝜌 > 𝜌 𝑗 for 𝑗 ∈ 𝐽 \ 𝐽 ′, we have that there exists some 𝜖1 > 0 such that for all
but finitely many 𝑛,

|𝑅(𝑛) | < 𝜌𝑛 (1−𝜖1) .

Since (4) holds for any 𝜖 > 0 it follows now that for all but finitely many 𝑛,

|𝐷 (𝑛) | > |𝑅(𝑛) | .

For all but fintely many 𝑛 we thus have

sgn(𝑣𝑛) = sgn(𝐷 (𝑛)) = sgn

(∑︁
𝑗 ∈𝐽 ′

𝑏 𝑗𝜆
𝑛
𝑗

)
.

This completes the proof the lemma. □

3.2 Orbits in T𝑑

Lemma 3.3 tells us that the information about the sign description 𝜎 can be found in the set
{(𝜆𝑛1 , . . . , 𝜆𝑛𝑑 ) : 𝑛 ∈ N}. We will recall a classical result that says that the set above is a dense subset
of the set of points in the 𝑑-dimensional torus that have all the multiplicative relations as 𝜆1, . . . , 𝜆𝑑 .

Consider the set of multiplicative relations of 𝜆 = (𝜆1, . . . , 𝜆𝑑 ):

M𝜆
def
= {v ∈ Z𝑑 : 𝜆𝑣11 𝜆

𝑣2
2 · · · 𝜆

𝑣𝑑
𝑑

= 1}.

The one-dimensional torus is the unit circle T
def
= {𝑧 ∈ C : |𝑧 | = 1}. Define the set of points in T𝑑

having all the multiplicative relations of 𝜆 as follows:

T𝜆
def
= {z ∈ T𝑑 : 𝑧𝑣11 𝑧

𝑣2
2 · · · 𝑧

𝑣𝑑
𝑑

= 1 for all v ∈ M𝜆}.

4This is a linear recurrence sequence because the point-wise product of two lrs is again a lrs.
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Denote by 𝑠 : T𝜆 → T𝜆 the map

(𝑧1, . . . , 𝑧𝑑 ) ↦→ (𝑧1𝜆1, . . . , 𝑧𝑑𝜆𝑑 ).

With this new notation we are interested in the set {𝑠𝑛 (1, . . . , 1) : 𝑛 ∈ N}. To prove that it is a
dense subset of T𝜆 we will use Kronecker’s theorem on simultaneous Diophantine approximation.

Theorem 3.5 (Kronecker, see e.g. [Cassels 1957, Page 53]). Let 𝜃1, . . . , 𝜃𝑘 , 𝜑1, . . . , 𝜑𝑘 ∈ R such
that for any integers 𝑎1, . . . , 𝑎𝑘 ,

𝑘∑︁
𝑖=1

𝑎𝑖𝜃𝑖 ∈ Z ⇒
𝑘∑︁
𝑖=1

𝑎𝑖𝜑𝑖 ∈ Z.

Then for every 𝜖 > 0, there exists 𝑛 ∈ N and integers 𝑟1, . . . , 𝑟𝑘 such that

|𝑛𝜃𝑖 − 𝑟𝑖 − 𝜑𝑖 | ≤ 𝜖,

for all 𝑖 ∈ {1, . . . , 𝑘}.

Lemma 3.6. For all z ∈ T𝜆 , the set 𝑂 (z)
def
= {𝑠𝑛 (𝑧1, . . . , 𝑧𝑑 ) : 𝑛 ∈ N} is dense in T𝜆 .

Proof. Let y ∈ T𝜆 . We have to prove that 𝑂 (z) intersects every 𝜖-ball around y. Let us write

𝜆𝑖 = 𝑒
𝜃𝑖 2𝜋 i, 𝑧𝑖 = 𝑒

𝛼𝑖 2𝜋 i, 𝑦𝑖 = 𝑒
𝛽𝑖 2𝜋 i,

and set 𝜑𝑖 = 𝛽𝑖 − 𝛼𝑖 , for 𝑖 ∈ {1, . . . , 𝑑}. Because y and z belong to T𝜆 , and the multiplicative
relations of 𝜆 correspond to additive relations of 𝜃 , the hypothesis of Theorem 3.5 is fulfilled and
the theorem can be applied. It tells us that there exists 𝑛 ∈ N and integers 𝑟1, . . . , 𝑟𝑑 such that for
every 𝑖 ∈ {1, . . . , 𝑑},

��𝑧𝑖𝜆𝑛𝑖 − 𝑦𝑖 �� = ���𝑒 (𝛼𝑖+𝑛𝜃𝑖−𝑟𝑖 ) 2𝜋 i − 𝑒𝛽𝑖 2𝜋 i
��� ≤ 2𝜋 |𝛼𝑖 + 𝑛𝜃𝑖 − 𝑟𝑖 − 𝛽𝑖 | ≤ 2𝜋𝜖.

□

Compactness of T𝜆 together with Lemma 3.6 entail that any open set in T𝜆 can be reached in a
bounded number of steps from any other point.

Lemma 3.7. Let𝑈 ⊆ T𝜆 be an open set. There exists 𝐵 ∈ N such that for every x ∈ T𝜆 , there exists
𝑛 ≤ 𝐵 such that 𝑠𝑛 (x) ∈ 𝑈 .

Proof. Lemma 3.6 implies that for any z ∈ T𝜆 , there exists some 𝑛 ∈ N such that 𝑠𝑛 (z) ∈ 𝑈 .
Whence by continuity of the successor function 𝑠 , we have that

{𝑠−𝑛 (𝑈 ) : 𝑛 ∈ N} = T𝜆,

is an open cover of T𝜆 . Since T𝜆 is bounded and closed as a subset of T𝑑 , it is compact. It follows
that it admits a finite sub-cover, i.e. there exists 𝐵 ∈ N such that

{𝑠−𝑛 (𝑈 ) : 𝑛 ∈ {1, 2, . . . , 𝐵}} = T𝜆 .

□
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3.3 The Proof of Theorem 3.1

It is tempting to try to prove Theorem 3.1 by showing that the sign descriptions of every subsequence
u(ℓ) , where 0 ≤ ℓ < 𝑃 , is almost periodic and combining the results. Unfortunately the proof cannot
be modular in this respect, for the simple fact that the product of two almost periodic sequences
need not be almost periodic itself; see [Muchnik et al. 2003, Theorem 22]. We must directly prove
almost periodicity for the whole sequence, which is done as follows.

Let u be a simple lrs, 𝜎 ∈ {−, 0, +}𝜔 its sign description, and𝑤 ∈ {−, 0, +}∗, a pattern that occurs
infinitely many times in 𝜎 . We have to prove that the distances between consecutive occurrences
are bounded.
Since𝑤 occurs infinitely many times in 𝜎 , there is some𝑚 ∈ N such that for infinitely many 𝑛,

𝑤 occurs in 𝜎𝑛𝑃𝜎𝑛𝑃+1 · · ·𝜎 (𝑛+𝑚)𝑃−1, (5)

where we recall that 𝑃 was defined as the least common multiple of orders of roots of unity among
the ratios of roots of u. Since the right-hand side of (5) is a word over a finite alphabet, there exists
a word𝑤 ′ ∈ {−, 0, +}∗ that has𝑤 as an infix such that for infinitely many 𝑛,

𝑤 ′ = 𝜎𝑛𝑃𝜎𝑛𝑃+1 · · ·𝜎 (𝑛+𝑚)𝑃−1 .

We prove that there is an upper bound for the distances among successive such 𝑛, which clearly
implies almost periodicity of 𝜎 .
Cut the word𝑤 ′ into𝑚 factors of length 𝑃 such that

𝑤 ′ = 𝑤 ′(1)𝑤 ′(2) · · ·𝑤 ′(𝑚).

Applying Lemma 3.3 to each subsequence u(ℓ) , and combining the resulting linear functions
together, we obtain a linear function 𝑓 : T𝜆 → R𝑃 such that for all but finitely many 𝑛, if
𝑓 (𝑠𝑛 (1, . . . , 1)) = (𝑎1, . . . , 𝑎𝑃 ), then

sgn(𝑎1) sgn(𝑎2) · · · sgn(𝑎𝑃 ) = 𝜎𝑛𝑃𝜎𝑛𝑃+1 · · ·𝜎 (𝑛+1)𝑃−1.

While 𝑓 clearly maps 𝑠𝑛 (1, . . . , 1) to R𝑃 , the reason why the same is true for other elements
of T𝜆 is as follows. The linear map in Lemma 3.3 has reals as a co-domain because certain pairs
among 𝜆1, . . . , 𝜆𝑑 are complex conjugates of one another, which allows for cancelling out of their
imaginary parts. In every tuple in T𝜆 the same pairs of numbers are complex conjugates of one
another, since being a complex conjugate for elements of the unit circle is a multiplicative relation,
and elements of T𝜆 , by definition, have all the multiplicative relations of (𝜆1, . . . , 𝜆𝑑 ).
Denote by 𝑔 : T𝜆 → {−, 0, +}𝑃 the composition of 𝑓 and sgn applied component-wise.
Since u(ℓ) are all non-degenerate, because of Proposition 3.2, some coordinates of 𝑓 (𝑠𝑛 (1, . . . , 1))

are identically zero, and some are zero only for finitely many 𝑛. Denote by 𝑍 ⊆ {1, 2, . . . , 𝑃} the
former. On components in 𝑍 , 𝑓 is a constant function mapping to zero.
It follows from the continuity of 𝑓 that for elements of 𝑣 ∈ {−, 0, +}𝑃 that have zeros exactly in

coordinates𝑍 , 𝑓 −1 (𝑣) is an open subset of T𝜆 . Since𝑤 ′(1), . . . ,𝑤 ′(𝑚) are words that occur infinitely
often, they must have zeros exactly in positions in 𝑍 , hence the set

𝑈 (𝑤 ′) def= {x ∈ T𝜆 : 𝑔(x) = 𝑤 ′(1), 𝑔 (𝑠 (x)) = 𝑤 ′(2), . . . , 𝑔
(
𝑠𝑚−1 (x)

)
= 𝑤 ′(𝑚)},

is open. By applying Lemma 3.7 we know that there exists 𝐵 ∈ N such that for any y ∈ {𝑠𝑛 (1, . . . , 1) :
𝑛 ∈ N}, there exists 𝑘 ≤ 𝐵 with 𝑠𝑘 (y) ∈ 𝑈 (𝑤 ′). So from any point, in fewer than 𝐵 steps, we enter
the set𝑈 (𝑤 ′) from where 𝑔 outputs𝑤 ′ (in the next𝑚 steps). This proves that the distances between
consecutive 𝑛 for which (5) holds is at most 𝐵 · 𝑃 .
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3.4 Effectiveness

We make a closer inspection of the proof of almost periodicity above, in order to gather three
lemmas which pull out what can be effectively computed about the sign description.

Lemma 3.8. Let 𝑤 ′ = 𝑤 ′(1)𝑤 ′(2) · · ·𝑤 ′(𝑚) be such that 𝑤 ′(𝑖) are factors of length 𝑃 , then the
following two statements are equivalent

• for infinitely many 𝑛,

𝜎𝑛𝑃𝜎𝑛𝑃+1 · · ·𝜎 (𝑛+𝑚)𝑃−1 = 𝑤 ′

• 𝑈 (𝑤 ′) is non-empty.

Proof. (⇒) Let 𝑘 ∈ N be such that the equation in Lemma 3.3 holds for all ℓ ∈ {0, 1, . . . , 𝑃 − 1}.
From the hypothesis there exists some 𝑛 > 𝑘 such that 𝜎𝑛𝑃 · · ·𝜎 (𝑛+𝑚)𝑃−1 = 𝑤 ′. Now the definition
of the set𝑈 (𝑤 ′) implies that it is not empty.
(⇐) Since𝑈 (𝑤 ′) is non-empty and open, we can apply Lemma 3.7, which gives us a bound 𝐵 on how
many steps we have to take in the walk in T𝑑 before we enter again the set𝑈 (𝑤 ′). Therefore we
enter the set𝑈 (𝑤 ′) infinitely many times, and hence the word𝑤 ′ occurs infinitely often in 𝜎 . □

The next lemma says that modulo a finite prefix, the word 𝜎 is strongly recurrent, which means
that if some word occurs in it, it does so infinitely often. This stems from the fact that after some
threshold, the sign description only depends on the walk in T𝑑 , which is repetitive.

Lemma 3.9. There exists a threshold 𝑐 ∈ N such that any word that occurs in the suffix 𝜎𝑐𝜎𝑐+1 · · · ,
occurs infinitely often in 𝜎 .

Proof. Let 𝑛1 ∈ N be such that for all 𝑛 ≥ 𝑛1 and 0 ≤ ℓ < 𝑃 , the equation in Lemma 3.3 holds.
Let 𝑛2 ∈ N be such that for all 0 ≤ ℓ < 𝑃 , u(ℓ) is either identically zero or has no zeros after 𝑛2 (well
defined thanks to Proposition 3.2). Set 𝑐 = max{𝑛1, 𝑛2}. Let𝑤 be some word that occurs after the
threshold 𝑐 in 𝜎 . Then there is some 𝑛 and𝑚 such that𝑤 occurs in

𝜎𝑛𝑃𝜎𝑛𝑃+1 · · ·𝜎 (𝑛+𝑚)𝑃−1.
Call this word𝑤 ′ and let𝑤 ′(1), . . . ,𝑤 ′(𝑚) be its decomposition into factors of length 𝑃 . Since𝑤 ′

occurs after 𝑛2 the factors𝑤
′(1), . . . ,𝑤 ′(𝑚) have zeros exactly in the same positions 𝑍 ⊆ {1, . . . , 𝑃}.

This, together with the fact that𝑤 ′ occurs after 𝑛1 implies that𝑈 (𝑤 ′) is open and non-empty. Now
Lemma 3.7 gives us a bound for the distances between consecutive occurrences of𝑤 ′. □

The last crucial property is that for all𝑤 the set 𝑈 (𝑤) is semi-algebraic and effective. We give
here a sketch and relegate the full proof, as well as the relevant definitions, to Appendix A.

Lemma 3.10. For all𝑤 , 𝑈 (𝑤) is semi-algebraic, and we can compute the first-order formula that
defines it.

Proof sketch. The set 𝑈 (𝑤) is a subset of C𝑑 while semi-algebraic sets are subsets of R𝑛 .
However there is a simple first-order interpretation of C in R, we take for every complex number
two real variables, one for the real part and one for the imaginary part.

The set of normalized roots 𝜆1, . . . , 𝜆𝑑 are algebraic numbers whose first-order formulas we can
effectively construct given a lrs. Their multiplicative relations, i.e. the setM𝜆 has a finite basis,
which can be computed using a result of Masser. Whence it follows that T𝜆 is semi-algebraic and
that we can effectively construct the first-order formula that defines it.
The lemma now follows because the coefficients of the linear map 𝑓 : T𝜆 → R𝑃 (in the

definition of 𝑈 (𝑤) and 𝑔), are algebraic and we can compute their first-order formula. For a full
proof see Appendix A. □
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4 A COUNTER-EXAMPLE FOR GENERAL LRS

We have proved that simple lrs have almost periodic sign descriptions. In this section we show that
the same does not hold for general lrs. The additional structure of simple lrs is consonant with
what is known about decidability: e.g., it is decidable whether a simple lrs is ultimately positive,
whereas the decidability of the same question for general lrs is open and a positive result would
imply computability of Lagrange constants of certain transcendental numbers, see [Ouaknine and
Worrell 2013, Theorem 5.1].

Let 𝜆 ∈ T be any algebraic number in the unit circle that is not a root of unity. Consider the
generalized power sum

𝑢𝑛
def
=
𝑛

2
𝜆𝑛 + 𝑛

2
𝜆
𝑛 + (1 − 𝑛) 1𝑛,

where 𝜆 is the complex conjugate of 𝜆. As discussed before, such sums are equivalent to linear
recurrence sequences (see [Everest et al. 2003, Section 1.1.6]), so we can easily extract an lrs

of order six from the sum above. This example has been designed in such a way as to have the
following property. Set 𝜃 := arg(𝜆), and using Euler’s formula deduce that 𝑢𝑛 = 1 − 𝑛 + 𝑛 cos(𝑛𝜃 ).
Consequently for all 𝑛, we have:

𝑢𝑛 > 0 ⇔ cos(𝑛𝜃 ) > 1 − 1

𝑛
. (6)

We will prove that this sequence has a sign description that is not almost periodic. More precisely
we will prove that (a) the letter ‘+’ occurs infinitely often in the sign description and (b) that the
distances between consecutive occurrences can be arbitrarily large.
The intuition is as follows. Since 𝜆 is not a root of unity, 𝜃 is not a rational multiple of 𝜋 and

hence {cos(𝑛𝜃 ) : 𝑛 ∈ N} is a dense subset of [0, 1]. Using basic properties of the cosine function
we can prove that the right-hand inequality in (6), i.e. cos(𝑛𝜃 ) > 1 − 1/𝑛, is true for infinitely many
𝑛. However, since the interval (1 − 1/𝑛, 1] becomes arbitrarily tight as 𝑛 increases, we have to wait
longer and longer until cos(𝑛𝜃 ) enters it.
We give now the proofs of the two claims (a) and (b) above.

Proposition 4.1. For infinitely many 𝑛 ∈ N, 𝑢𝑛 > 0.

Proof. For a real number 𝑥 ∈ R denote by [𝑥] its distance to the closest integer, and by [𝑥]2𝜋
its distance to the closest integer multiple of 2𝜋 , i.e.

[𝑥] def= min
𝑘∈Z
|𝑥 − 𝑘 |, [𝑥]2𝜋

def
= min
𝑘∈Z
|𝑥 − 2𝑘𝜋 |.

We will first prove that for infinitely many 𝑛 ∈ N,

[𝑛𝜃 ]2𝜋 <

2𝜋

𝑛
.

This is a corollarly of Dirichlet’s Theorem [Lang 1995, Chapter 2, Theorem 1], which states that for
every 𝑥 ∈ R there exist infinitely many 𝑛 ∈ N such that [𝑛𝑥] < 1/𝑛. Indeed since for any 𝑥 ∈ R,
[𝑥]2𝜋 = 2𝜋 [𝑥/(2𝜋)], Dirichlet’s Theorem implies that for infinitely many 𝑛 ∈ N,

[𝑛𝜃 ]2𝜋 = 2𝜋

[
𝑛
𝜃

2𝜋

]
<

2𝜋

𝑛
. (7)

By the monotonicity of the cosine function on [0, 𝜋] we have that for all 𝑛 ≥ 2, [𝑛𝜃 ]2𝜋 < 2𝜋/𝑛
if and only if cos(𝑛𝜃 ) > cos(2𝜋/𝑛). As a consequence of (7), the inequality cos(𝑛𝜃 ) > cos(2𝜋/𝑛)
holds for infinitely many 𝑛.
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Using a Taylor series expansion of cosine, we can prove that for 𝑥 sufficiently close to 0,

cos𝑥 ≥ 1 − 𝑥
2

2
≥ 1 − |𝑥 |

2𝜋
.

Applying this bound to 𝑥 = 2𝜋/𝑛, we derive that for infinitely many 𝑛 ∈ N,

cos(𝑛𝜃 ) > cos

(
2𝜋

𝑛

)
≥ 1 − 1

𝑛
.

Therefore, from (6) it follows that ⟨𝑢⟩𝑛∈N is positive in infinitely many positions, or equivalently
the letter ‘+’ occurs infinitely often in its sign description. □

Proposition 4.2. For every 𝑝 ∈ N we can find 𝑝 consecutive entries in ⟨𝑢⟩𝑛∈N that are negative or
zero.

Proof. Fix some 𝑝 ∈ N and let 𝑁 ∈ N be such that if cos𝑥 > 1 − 1/𝑁 then 𝑥 ≤ 2𝜋/(𝑝 + 1), for
all 𝑥 ∈ [−𝜋, 𝜋]. Define:

𝐼0
def
=

{
𝑧 ∈ T : cos(arg 𝑧) > 1 − 1

𝑁
, −𝜋 ≤ arg 𝑧 ≤ 𝜋

}
.

Using (6), clearly for all 𝑛 ≥ 𝑁 ,

𝑢𝑛 > 0 ⇒ 𝑒𝑛𝜃 i = 𝜆𝑛 ∈ 𝐼0 .

For all 𝑘 ∈ N, we denote by 𝐼𝑘 the rotation of 𝐼0 by −𝑘𝜃 , i.e. 𝐼𝑘
def
= 𝑒−𝑛𝑘𝜃 i𝐼0. Similarly to above, for

any 𝑘 ∈ N and 𝑛 ≥ 𝑁 ,

𝑢𝑛+𝑘 > 0 ⇒ 𝑒𝑛𝜃 i = 𝜆𝑛 ∈ 𝐼𝑘 .

Define 𝐼
def
= 𝐼0 ∪ 𝐼1 ∪ · · · ∪ 𝐼𝑝−1, so that for all 𝑛 ≥ 𝑁 ,

𝑢𝑛+𝑘 > 0 for some 𝑘 ∈ {0, . . . , 𝑝 − 1} ⇒ 𝑒𝑛𝜃 i = 𝜆𝑛 ∈ 𝐼 . (8)

By construction of 𝑁 above, the set T \ 𝐼 is non-empty and it is a finite union of intervals, so in
particular it has non-empty interior 𝑈 . It follows from an analogue of Lemma 3.6 that for some
𝑛 ∈ N, 𝜆𝑛 ∈ 𝑈 . This in turn means, using the contrapositive of (8), that starting from 𝑢𝑛 , the next 𝑝
consecutive entries are either zero or negative. □

5 DECIDING 𝜔-REGULAR PROPERTIES

In this section we prove the main theorem, which we recall here.

Theorem 1.2. Given a prefix-independent 𝜔-regular language L and a simple lrs u, it is decidable
whether the sign description of u belongs to L.

We will first explain what prefix-independent languages are, and how does an automaton that
accepts such a language look like. It will be simpler to work with a finite monoid (similar to the
syntactic monoid) that has all the relevant information about the automaton, so we will define this
afterwards. In the end of the section we will describe the algorithm.
Prefix-independent languages are those that have the property that by modifying a word in

finitely many places it is not possible to change its membership in the language. More precisely:

Definition 5.1 (Prefix-independent language). A language L ⊆ Σ
𝜔 is prefix-independent if for all

infinite words 𝛼, 𝛼 ′ such that we can get 𝛼 ′ from 𝛼 with finitely many insertions and deletions we
have that

𝛼 ∈ L ⇔ 𝛼 ′ ∈ L .
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These are languages that have trivial right-congruence [Angluin and Fisman 2020, Section 4].
We will assume that the 𝜔-regular language L is given as a deterministic Müller automaton A,

which is a tuple:

⟨ 𝑄︸︷︷︸
states

, 𝑞0︸︷︷︸
initial state

, Σ︸︷︷︸
alphabet

, 𝛿 : 𝑄 × Σ→ 𝑄︸              ︷︷              ︸
transition function

, 𝐹 ⊆ P(𝑄)︸      ︷︷      ︸
accepting states

⟩.

The automaton accepts a word 𝛼 if the unique run is such that the set of states that appear infinitely
often belongs to 𝐹 . We also assume that any state can be reached from the initial state.

Lemma 5.2. Let A be a deterministic Müller automaton that recognizes a prefix-independent
language, and 𝛼 an infinite word. Then the following are equivalent:

(1) A accepts 𝛼 ,
(2) A accepts some suffix of 𝛼 starting from some state,
(3) A accepts every suffix of 𝛼 starting from any state.

Proof. We prove 2⇒ 3, other directions are trivial. Let 𝛽 be a suffix of 𝛼 that is accepted starting
from some state. Since the latter can be reached from 𝑞0, it follows that 𝑤𝛼 is accepted by the
automaton (started in 𝑞0) for some finite word𝑤 . For 3, take any suffix 𝛽 ′ of 𝛼 and any state 𝑞1; and
let𝑤 ′ be the word that takes the automaton from state 𝑞0 to state 𝑞1. The words𝑤𝛽 and𝑤

′𝛽 ′ have a
suffix in common, since the language is prefix-independent,𝑤 ′𝛽 ′ is accepted by the automaton. □

As a consequence of this lemma, to show that the automaton accepts the sign description, we
only have to prove that some suffix of the sign description 𝜎 is accepted by the given automatonA
started at some state 𝑞1.

Before we turn our attention to the monoid associated with the automaton, we gather here from
the prequel some properties of the sign description of a given simple lrs. These are the essential
properties that will be used by the algorithm.

Proposition 5.3. Let u be a lrs and 𝜎 its sign description, then the following hold:

(1) 𝜎 is almost-periodic,
(2) there is a threshold 𝑐 ∈ N such that any word that occurs in the suffix 𝜎𝑐𝜎𝑐+1 · · · , occurs infinitely

often in 𝜎 ,
(3) there is a procedure that inputs a finite word𝑤 and decides whether𝑤 occurs infinitely often

in 𝜎 ,
(4) there is a procedure that inputs a finite word𝑤 that occurs infinitely often in 𝜎 and outputs the

bound on the distances between consecutive occurrences.

Proof. Property 1 is Theorem 3.1, Property 2 is Lemma 3.9. We prove 3.
Recall that 𝑃 is the least common multiple of orders of roots of unity among the ratios of roots of

the given lrs. We can effectively determine it, and moreover for ℓ ∈ {0, 1, . . . , 𝑃 − 1} we can decide
which subsequence u(ℓ) is identically zero; which we denote by 𝑍 ⊆ {0, 1, . . . , 𝑃 − 1}. We construct
a word𝑤 ′ such that

𝑤 ′ = 𝑤 ′(1)𝑤 ′(2) · · ·𝑤 ′(𝑚), for some𝑚 ∈ N,

where the factors𝑤 ′(𝑖) are of length 𝑃 ,𝑤 occurs in𝑤 ′, and the factors𝑤 ′(𝑖) have zeros exactly in
positions 𝑍 . If this is not possible, the procedure returns no. The word𝑤 occurs infinitely often if
and only if for infinitely many 𝑛, we have

𝜎𝑛𝑃𝜎𝑛𝑃+1 · · ·𝜎 (𝑛+𝑚)𝑃−1 = 𝑤 ′.
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The latter is true if and only if𝑈 (𝑤 ′) is non-empty, according to Lemma 3.8. Since𝑈 (𝑤 ′) is semi-
algebraic ( Lemma 3.10) and we can effectively construct its formula, to test whether 𝑈 (𝑤 ′) is
empty we can use Tarski’s algorithm, see Theorem A.1.

We now prove item 4. We continue as above and define𝑤 ′, so that𝑈 (𝑤 ′) is non-empty. Since the
normalized roots 𝜆1, . . . , 𝜆𝑑 are algebraic with effective descriptions, for all 𝑘 ∈ N, the set of points
z ∈ T𝜆 such that (𝑧1𝜆𝑘1 , . . . , 𝑧𝑑𝜆𝑘𝑑 ) ∈ 𝑈 (𝑤

′) is semi-algebraic, and we can effectively construct its
formula 𝜑𝑘 . The formula for the set of points that enter 𝑈 (𝑤 ′) in at most 𝑗 steps, 𝜑≤ 𝑗 , is just the
disjunction of formulas 𝜑1, . . . , 𝜑 𝑗 . Since 𝑈 (𝑤 ′) is open and non-empty, Lemma 3.7 implies that
there exists some 𝐵 such that any point in T𝜆 enters𝑈 (𝑤 ′) in fewer than 𝐵 steps. In the language
above this means that Φ(𝐵) which says:

every element of T𝜆 satisfies 𝜑≤𝐵,

is true. Now to compute 𝐵, or a different (stronger) bound, we only need to find the first formula in
⟨Φ(1),Φ(2), . . .⟩ that is true. We can do this using Tarski’s algorithm. □

Fix a deterministic Müller automaton A and a lrs u with sign description 𝜎 for the rest of this
section. We provide a “wrapperž for the procedures in properties 3 and 4 in the proposition above.
There is a procedure “interž that inputs a word𝑤 and outputs a finite set of words, or no:

𝑤 ↦→
{
no if𝑤 does not occur infinitely often in 𝜎 ,

{𝑤1,𝑤2, . . . ,𝑤𝑘 } otherwise,

such that, in the case when𝑤 occurs infinitely often in 𝜎 ,

𝜎 = 𝑟 𝑤 𝑤𝑖1 𝑤 𝑤𝑖2 · · · ,
where 𝑟 is some finite prefix and 𝑖1, 𝑖2, . . . take values in {1, 2, . . . , 𝑘}.

Intuitively, from the almost periodicity of 𝜎 , when𝑤 occurs infinitely often, the distance between
the occurrences is bounded, hence there can be only finitely many words that appear between
consecutive occurrences of𝑤 , using the procedure in Property 3 of Proposition 5.3, we can find
these words that appear between occurrences of𝑤 , and it is this set of words that the procedure
“interž returns.

5.1 The Finite Monoid Associated to A
Denote by 𝔐 the following monoid. Its elements are directed and labeled graphs, where the set of
vertices is 𝑄 (the set of states of the automaton), and the edges are labeled by subsets of 𝑄 . The
product of the element 𝑥 with the element𝑦 is defined as follows: for some 𝑞1, 𝑞2 ∈ 𝑄 and 𝑆1, 𝑆2 ⊆ 𝑄

𝑞1
𝑆1∪𝑆2−−−−→ 𝑞2︸        ︷︷        ︸
in 𝑥 · 𝑦

,

if and only if there exists some 𝑞′ ∈ 𝑄 such that:

𝑞1
𝑆1−→ 𝑞′︸    ︷︷    ︸
in 𝑥

and 𝑞′
𝑆2−→ 𝑞2︸    ︷︷    ︸
in 𝑦

The homomorphism ℎ, is defined as follows. For any letter 𝑎 of the alphabet (which in our case
is {−, 0, +}), ℎ(𝑎) is such that for all 𝑞1, 𝑞2 ∈ 𝑄

𝑞1
{𝑞1,𝑞2 }−−−−−→ 𝑞2︸          ︷︷          ︸
in ℎ (𝑎)

,
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if and only if there is a transition in the automaton A from 𝑞1 to 𝑞2 with the letter 𝑎. The monoid
𝔐 is the monoid that is generated by {ℎ(𝑎) : 𝑎 ∈ {−, 0, +}} as well as ℎ(𝜖), where 𝜖 is the empty
word, for the neutral element.

This monoid (a variant of the transition semigroup [Jean-eric Pin 2004, Chapter 3]) gathers all
the information needed from the automatonA, e.g. if there is an edge from 𝑠1 to 𝑠2 in ℎ(𝑤), labeled
by 𝑆 , it means that in the automaton, we can go from state 𝑠1 to state 𝑠2 with the word 𝑤 while
visiting all the states in 𝑆 .

In our case, where the automaton A is deterministic, the elements of the monoid 𝔐 are particu-
larly simple in that in every 𝑥 , and every 𝑞 ∈ 𝑄 , there is only one outgoing edge from 𝑞. Therefore
it makes sense to talk about the states that are seen from 𝑞 in 𝑥 , i.e. the set 𝑆 that is the label of the
unique outgoing transition of from 𝑞 in 𝑥 .

Definition 5.4 (Increasing product). Let 𝑥1, . . . , 𝑥𝑘 ∈ 𝔐. We say that the product

𝑥 = 𝑥1𝑥2 · · · 𝑥𝑘
is increasing, if there exists some 𝑞 ∈ 𝑄 such that the states that are seen from 𝑞 in 𝑥1 is a strict
subset of the states that are seen from 𝑞 in 𝑥 .

In terms of the automaton A, this definition means that we visit strictly more states by reading
a word associated to 𝑥2 · · · 𝑥𝑘 , than we do by reading a word associated to 𝑥1.

Example 5.5. Consider the following elements.

The product 𝑥1𝑥2 is not increasing, however the product 𝑥1𝑥2𝑥3 is increasing, because of the path:

𝑞0
{𝑞0,𝑞1 }−−−−−→ 𝑞1

{𝑞1 }−−−→ 𝑞1
{𝑞1,𝑞2 }−−−−−→ 𝑞2.

So in the product 𝑥1𝑥2𝑥3, the states that are seen from 𝑞0 are {𝑞0, 𝑞1, 𝑞2}. But in 𝑥1, the states that
are seen from 𝑞0 are {𝑞0, 𝑞1}, a strict subset. Similarly, the product 𝑥2𝑥3 is also increasing.

We make the following observation about increasing products before we move on to the descrip-
tion of the algorithm.

Lemma 5.6. Let 𝑥1𝑥2 · · · 𝑥𝑘 be an increasing product. Then there exists 𝑖 ∈ {1, . . . , 𝑘 − 1} such that:

𝑥𝑖𝑥𝑖+1 is increasing.

Moreover, for all 1 ≤ 𝑟 ≤ 𝑖 and 𝑖 < 𝑟 ′ ≤ 𝑘 the product

𝑥𝑟𝑥𝑟+1 · · · 𝑥𝑟 ′ is increasing.

Proof. Since 𝑥1𝑥2 · · · 𝑥𝑘 is increasing there exists a state 𝑞 and a path

𝑞
𝑆1−→ 𝑞1︸   ︷︷   ︸
in 𝑥1

𝑆2−→ 𝑞2︸︷︷︸
in 𝑥2

· · ·
𝑆 𝑗−→ 𝑞 𝑗︸︷︷︸
in 𝑥 𝑗

,
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such that 𝑆 𝑗 is the first set that is not a subset of 𝑆1. Let 𝑖
def
= 𝑗 − 1. Now the lemma follows from the

fact that multiplying an increasing product to the right with elements of the monoid gives us again
an increasing product. □

5.2 Description of the Algorithm

The algorithm only uses the monoid𝔐 and the procedure inter. It starts with some word𝑤 that
occurs infinitely often in 𝜎 (e.g. a letter). Let inter(𝑤) = {𝑤1, . . . ,𝑤𝑘 }. Among words:

𝑤 𝑤𝑖 𝑤 𝑤 𝑗 ,

where 𝑖, 𝑗 ∈ {1, . . . , 𝑘} that occur infinitely often in 𝜎 , it tries to find one such that

ℎ(𝑤) ℎ(𝑤𝑖 ) ℎ(𝑤) ℎ(𝑤 𝑗 ) is increasing.

If it manages to find such a word 𝑤𝑤𝑖𝑤𝑤 𝑗 , it calls inter(𝑤𝑤𝑖𝑤𝑤 𝑗 ) and repeats the steps above.
Since for every state 𝑞 ∈ 𝑄 , the states seen from 𝑞 in ℎ(𝑤) is a subset of the states that are seen
from 𝑞 in ℎ(𝑤𝑤𝑖𝑤𝑤 𝑗 ), it follows that in fewer than |𝑄 |2 iterations, a fix-point is reached: a word 𝑢,
with inter(𝑢) = {𝑢1, . . . , 𝑢𝑐 } such that among all words

𝑢 𝑢𝑖 𝑢 𝑢 𝑗 ,

that occur infinitely often in 𝜎 ,

ℎ(𝑢) ℎ(𝑢𝑖 ) ℎ(𝑢) ℎ(𝑢 𝑗 ) is not increasing. (9)

We give the crucial property of the word 𝑢 before proceeding with the last step of the algorithm.
Since inter(𝑢) = {𝑢1, . . . , 𝑢𝑐 } there exists some suffix of 𝜎 that is equal to

𝜎 ′
def
= 𝑢 𝑢𝑖1 𝑢 𝑢𝑖2 · · · ,

where 𝑖𝑛 take values in {1, . . . , 𝑐}, and moreover from Property 2 in Proposition 5.3, we can assume
that 𝜎 ′ is such that any word that occurs in 𝜎 ′, occurs infinitely often.
Observe that for all 𝑛 ∈ N

ℎ(𝑢) ℎ(𝑢𝑖1 ) ℎ(𝑢) ℎ(𝑢𝑖2 ) · · ·ℎ(𝑢) ℎ(𝑢𝑖𝑛 ) is not increasing. (10)

Indeed, if it were an increasing product, we would be able to find a short one, because of Lemma 5.6,
in particular we would be able to find an increasing product of the form ℎ(𝑢)ℎ(𝑢𝑖 )ℎ(𝑢)ℎ(𝑢 𝑗 ). By
construction of 𝜎 ′ the word 𝑢𝑢𝑖𝑢𝑢 𝑗 occurs infinitely often in 𝜎 ′ (and therefore also in 𝜎), which
contradicts (9).
In the last step, the algorithm picks an edge

𝑞
𝑆−→ 𝑞′

in ℎ(𝑢), such that 𝑆 has minimal cardinality out of all the other labels of edges in ℎ(𝑢). It returns
yes if and only if 𝑆 ∈ 𝐹 , where 𝐹 is the collection of accepting sets of states in the definition of the
automaton A.
For the correctness of the algorithm we prove the following claim.

Lemma 5.7. When the automaton A reads the word 𝜎 ′ starting from the state 𝑞, the set of states
that is seen infinitely often is 𝑆 .

This suffices because the automaton A accepts the infinite word 𝜎 if and only if it accepts the
word 𝜎 ′ starting from state 𝑞, thanks to Lemma 5.2.
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Proof. Observation (10) implies that the run of the automaton A starting from 𝑞 and reading
the infinite word 𝜎 ′ looks as follows:

𝑞
visits 𝑆−−−−−→ 𝑞1

visits 𝑆1−−−−−−→ 𝑞2
visits 𝑆−−−−−→ 𝑞3

visits 𝑆2−−−−−−→ 𝑞4
visits 𝑆−−−−−→ · · · ,

where 𝑆𝑛 ⊆ 𝑆 ; and the reason why in every second edge the label is 𝑆 is because there is no label
that is a subset of 𝑆 in ℎ(𝑢) (except itself), because we have chosen 𝑆 to have minimal cardinality
out of all other labels in ℎ(𝑢). □

We have thus proved Theorem 1.2. As for Theorem 1.1, the circumstances are simpler. When
the lrs u is fixed, so is the bound 𝑛̃0, defined as the maximum of the bounds from Lemma 3.3
over all 0 ≤ ℓ < 𝑃 . The number 𝑛̃0 together with Property 4 in Proposition 5.3 mean that for any
word 𝑤 we can effectively determine the bound 𝑝 in Definition 2.4. As a consequence, we can
apply Theorem 2.5.

6 EXTENSIONS

Theorem 1.2 can be extended in a couple of ways: (a) it is possible to decide properties of the
product of multiple sign descriptions, corresponding to different lrs, and (b) instead of predicates
that speak about the sign of the entries, we can have general polynomial inequalities. We have
chosen to present the specialized Theorem 1.2, so as not to obscure the principal ideas.

6.1 Multiple lrs

We are given𝑚 simple linear recurrence sequences:

u(1) , u(2) , . . . , u(𝑚) , (11)

of orders 𝑑 (1) , 𝑑 (2) , . . . , 𝑑 (𝑚) respectively. The product of their sign descriptions 𝜎 (1) × · · · × 𝜎 (𝑚) is
an infinite word 𝜎̃ over the alphabet {−, 0, +}𝑚 . We explain how the proof in the prequel can be
adapted to prove a generalisation of Theorem 1.2, where u is replaced by (11), and instead of the
sign description 𝜎 , we have 𝜎̃ , the product of sign descriptions.
Define:

𝜆̃
def
=

(
𝜆
(1)
1 , . . . , 𝜆

(1)
𝑑 (1)

, 𝜆
(2)
1 , . . . , 𝜆

(2)
𝑑 (2)

, . . . , 𝜆
(𝑚)
1 , . . . , 𝜆

(𝑚)
𝑑 (𝑚)

)
,

where 𝜆
(𝑘)
𝑖 are the normalized roots of u(𝑘) as in (3). The subgroup of the torus, T

𝜆̃
, and the successor

function 𝑠 : T
𝜆̃
→ T

𝜆̃
are defined as expected5. Lemma 3.6 can be applied to T

𝜆̃
, consequently the

set {𝑠𝑛 (1, . . . , 1) : 𝑛 ∈ N} is a dense subset of T
𝜆̃
, and any open subset of the torus can be reached

in bounded number of steps.
Let 𝑘 ∈ {1, . . . ,𝑚}, and denote by 𝑃 (𝑘) the least commonmultiple of the orders of all roots of unity

among the ratios of the roots of u(𝑘) , as defined in the beginning of Section 3. Applying Lemma 3.3
to the subsequences of u(𝑘) and combining the results yields the following. There exists a linear

function 𝑓 , from T𝜆 (𝑘 ) to R
𝑃 (𝑘 ) and a threshold 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0,

sgn

(
𝑓
(
𝑠𝑛 (1, . . . , 1)

) )
= 𝜎 (𝑘)

[
𝑛𝑃 (𝑘) , (𝑛 + 1)𝑃 (𝑘)

]
,

where sgn is applied component-wise and the word on the right hand side is the factor of 𝜎 (𝑘) that
starts in position 𝑛𝑃 (𝑘) and ends in position (𝑛 + 1)𝑃 (𝑘) . Let 𝑃 be the least common multiple of

5There is another option of defining T
𝜆̃
as the product of T

𝜆 (𝑖 ) . However this is a different object, not suitable for our needs;

in particular the hypothesis of Theorem 3.5 is invalidated.
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𝑃 (1) , . . . , 𝑃 (𝑚) . We can glue together the linear functions above to build another linear function

𝑔 : T
𝜆̃
→ R𝑃 such that the following holds. There exists a threshold, after which, for all 𝑛,

sgn

(
𝑔
(
𝑠𝑛 (1, . . . , 1)

) )
= 𝜎̃

[
𝑛𝑃, (𝑛 + 1)𝑃

]
.

After establishing this fact, the rest of the proof depends only on the objects T
𝜆̃
, 𝑠 and the linear

function 𝑔. As a consequence we have the following theorem.

Theorem 6.1. Given a prefix-independent 𝜔-regular language L and simple linear recurrence

sequences u(1) , . . . , u(𝑚) , it is decidable whether the product of sign descriptions 𝜎̃ , belongs to L.

6.2 Semi-algebraic Predicates

Theorem 6.1 already allows us to decide properties such as: “only finitely many times, does the
sequence pass from a value smaller than 3, to a value larger than 10, without having the value 5 in
betweenž.

Example 6.2. More precisely, there are only finitely many 𝑛 ∈ N such that

∃𝑚 > 𝑛,𝑢𝑛 < 3 and 𝑢𝑚 > 10, moreover for every 𝑟, 𝑛 ≤ 𝑟 ≤ 𝑚,𝑢𝑟 ≠ 5. (12)

This can be done as follows. Define:

𝑢 (1)
def
= ⟨𝑢𝑛 − 3⟩𝑛∈N, 𝑢 (2)

def
= ⟨𝑢𝑛 − 5⟩𝑛∈N, 𝑢 (3)

def
= ⟨𝑢𝑛 − 10⟩𝑛∈N .

These sequences are linear recurrence sequences, because lrs are closed under addition and product
of sequences. Consider the product 𝜎̃ , of sign descriptions of the lrs above. This is an infinite word
over the alphabet {−, 0, +}3, so a letter looks like: (−, +,−). The property (12), in terms of 𝜎̃ , can be
expressed as: “only finitely many times does a letter of the type (−, ∗, ∗) appear followed by a letter
of the type (∗, ∗, +) without having a letter of type (∗, 0, ∗) in betweenž. This is a prefix-independent
𝜔-regular property.

In the example above we have shifted the sequence by constants 3, 5, and 10, to produce new lrs.
More generally, lrs are closed under sequence addition and product, as it can readily be seen when
the sequences are given as exponential polynomials.

Proposition 6.3. Let u, v be two linear recurrence sequences. Both ⟨𝑢𝑛 + 𝑣𝑛⟩𝑛∈N and ⟨𝑢𝑛𝑣𝑛⟩𝑛∈N are
linear recurrence sequences as well. Furthermore if both u and v are simple, then so is the point-wise
sum and product.

As a consequence of this proposition, given lrs u(1) , . . . , u(𝑚) , and a polynomial 𝐹 ∈ Z[𝑥1, . . . , 𝑥𝑚],
the sequence u(𝐹 ) := ⟨𝐹 (𝑢 (1)𝑛 , . . . , 𝑢

(𝑚)
𝑛 )⟩𝑛∈N is a lrs. It follows that we can have predicates that are

polynomial inequalities. In other words, for polynomials 𝐹1, . . . , 𝐹𝑘 , we can construct the sequences
u(𝐹1), . . . , u(𝐹𝑘 ) and apply Theorem 6.1.
We can go one step further, and define predicates which are equal to membership in a semi-

algebraic set (Appendix A). We explain this more precisely. Let

𝑆1, . . . , 𝑆𝑘 ⊆ R𝑚,

be semi-algebraic sets. Define Si, 𝑖 ∈ {1, . . . , 𝑘}, a predicate on naturals, to be true for 𝑛 ∈ N if and
only if (

𝑢
(1)
𝑛 , . . . , 𝑢

(𝑚)
𝑛

)
∈ 𝑆𝑖 .

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 48. Publication date: January 2021.



48:22 Shaull Almagor, Toghrul Karimov, Edon Kelmendi, Joël Ouaknine, and James Worrell

The zone description of u(1) , . . . , u(𝑚) with respect to S1, . . . , Sk is the infinite word 𝜏 over the
alphabet P({S1, . . . , Sk}), defined for all 𝑛 ∈ N as:

𝜏𝑛 is the subset of predicates {S1, . . . , Sk} that are true in 𝑛.
Since quantifiers can be eliminated in first order logic of real closed fields, membership in a

semi-algebraic set reduces to fulfilling a finite set of polynomial inequalities. As we have already
shown how we are able to apply Theorem 6.1 on predicates that are polynomial inequalities we
have the following theorem.

Theorem 6.4. Given semi-algebraic sets 𝑆1, . . . , 𝑆𝑘 , a prefix-independent 𝜔-regular language L,
and simple linear recurrence sequences u(1) , . . . , u(𝑚) , it is decidable whether the zone description of
the sequences with respect to S1, . . . , Sk belongs to L.

ACKNOWLEDGMENTS

Shaull Almagor has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant agreement No. 837327. Joël Ouaknine
is supported by ERC grant AVS-ISS (648701) and DFG grant 389792660 as part of TRR 248 (see
https://perspicuous-computing.science). James Worrell is supported by EPSRC Fellowship
EP/N008197/1.

A FIRST-ORDER THEORY OF REAL CLOSED FIELDS

In the first-order logic of real closed fields the atomic formulas are of the form:

𝑝 (𝑥1, . . . , 𝑥𝑘 ) ∼ 0,

where 𝑝 is a polynomial in Z[𝑥1, . . . , 𝑥𝑘 ] and ∼∈ {>,=}. In this logic we are allowed to quantify over
real numbers, and use the Boolean connectives. Subsets of R𝑘 that satisfy a formula Φ(𝑥1, . . . , 𝑥𝑘 )
of this logic are called semi-algebraic sets. The first-order logic of real closed fields admits effective
quantifier elimination, a fact known as the Tarski’s theorem, which we state as follows.

Theorem A.1 ([Tarski 1951, Theorem 37]). There is an algorithm that inputs a sentence Φ (a
formula without free variables) from the language above, and returns yes if and only if Φ is true over
the real numbers.

There is a natural first-order interpretation of the field of complex numbers into the field of real
numbers, where every complex variable 𝑧 = 𝑥 + i𝑦 is replaced by two real variables 𝑥 and 𝑦.

Example A.2. Consider the polynomial 𝑝 (𝑧) := 𝑧3 + 5𝑧. Its roots are 𝜆1 := 0, 𝜆2 := i
√
5, and

𝜆3 := −i
√
5. The algebraic number 𝜆2 can be identified with the formula (to be interpreted over C)

𝜙2 (𝑧) which says 𝑝 (𝑧) = 0 and Im(𝑧) > 2. Using the interpretation alluded above, we replace 𝜙2 (𝑧)
with 𝜙 ′2 (𝑥,𝑦) (where 𝑥 and 𝑦 range over reals) which says 𝑝1 (𝑥,𝑦) = 𝑝2 (𝑥,𝑦) = 0 and 𝑦 > 2 where

𝑝1 (𝑥,𝑦)
def
= 𝑥3 − 3𝑥𝑦2 + 5𝑥, 𝑝2 (𝑥,𝑦)

def
= 3𝑥2𝑦 − 𝑦3 + 5𝑦.

Clearly

{𝑧 ∈ C : 𝑝 (𝑧) = 0 and Im(𝑧) > 2} = {𝑥 + i𝑦 ∈ C : 𝑝1 (𝑥,𝑦) = 𝑝2 (𝑥,𝑦) = 0 and 𝑦 > 2}.

The intervals where the normalized roots of the characteristic polynomial associated to a lrs
lay, can be computed, therefore we assume that 𝜆 = (𝜆1, . . . , 𝜆𝑑 ) are given by formulas as in
the example above. One can take products and sums of such numbers, i.e. compute a different
formula which defines the product or sum. We will prove that the set T𝜆 (defined in Section 3.2) is
semi-algebraic. After this, we will give a full proof of Lemma 3.10.
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Lemma A.3. The set{
(𝑥1, 𝑦1, . . . , 𝑥𝑑 , 𝑦𝑑 ) ∈ R2𝑑 : (𝑥1 + i𝑦1, . . . , 𝑥𝑑 + i𝑦𝑑 ) ∈ T𝜆

}
is semi-algebraic.

Proof. The set of multiplicative relations of 𝜆 = (𝜆1, . . . , 𝜆𝑑 ) is:

M𝜆
def
= {v ∈ Z𝑑 : 𝜆𝑣11 𝜆

𝑣2
2 · · · 𝜆

𝑣𝑑
𝑑

= 1}.

This is an Abelian subgroup of (Z𝑑 , +), hence it has a finite basis 𝐵 ⊂ Z𝑑 . Masser gave an explicit
upper bound on the components of this basis in [Masser 1988, Section 4]. As a consequence, 𝐵 is

computable: to test whether some (𝑏1, . . . , 𝑏𝑑 ) is in 𝐵, or equivalently whether 𝜆𝑏11 · · · 𝜆
𝑏𝑑
𝑑

= 1, use
Theorem A.1. We recall the definition of T𝜆 :

T𝜆
def
= {z ∈ T𝑑 : 𝑧𝑣11 𝑧

𝑣2
2 · · · 𝑧

𝑣𝑑
𝑑

= 1 for all v ∈ M𝜆}.
Since 𝐵 is a basis ofM𝜆 , we can replaceM𝜆 by 𝐵 in the definition above. So T𝜆 is the set of all
(𝑥1, 𝑦1, . . . , 𝑥𝑑 , 𝑦𝑑 ) such that for every (𝑏1, . . . , 𝑏𝑑 ) ∈ 𝐵 we have:

(𝑥1 + i𝑦1)𝑏1 (𝑥2 + i𝑦2)𝑏2 · · · (𝑥𝑑 + i𝑦𝑑 )𝑏𝑑 − 1 = 0.

Since this is a finite set of equations, the lemma follows. □

We give a full proof of Lemma 3.10.

Lemma 3.10. For all𝑤 , 𝑈 (𝑤) is semi-algebraic, and we can compute the first-order formula that
defines it.

Proof. Let 𝑃,𝑚 ∈ N and 𝑤 = 𝑤 (1)𝑤 (2) · · ·𝑤 (𝑚) ∈ {−, 0, +}∗ be such that 𝑤 (𝑖) are factors of
length 𝑃 . We recall the definitions from Section 3.3.

𝑈 (𝑤) def= {x ∈ T𝜆 : 𝑔(x) = 𝑤 (1), 𝑔 (𝑠 (x)) = 𝑤 (2), . . . , 𝑔
(
𝑠𝑚−1 (x)

)
= 𝑤 (𝑚)},

where 𝑔 : T𝜆 → {−, 0, +}𝑃 is the composition of 𝑓 and sgn applied component-wise, 𝑓 is the linear
map 𝑓 : T𝜆 → R𝑃 that we get after applying Lemma 3.3 to every subsequence uℓ , and finally 𝑠
maps (𝑥1, . . . , 𝑥𝑑 ) to (𝜆1𝑥1, . . . , 𝜆𝑑𝑥𝑑 ). Since we have formulas for 𝜆𝑖 , we can compute formulas for
𝑠𝑘 (x), for any 𝑘 ∈ N. Inspecting the proof of Lemma 3.3, reveals that the constants 𝑧1, . . . , 𝑧𝑑 have
computable formulas, hence the same holds for 𝑓 (𝑠𝑘 (x)), i.e. we can compute 𝜑𝑘 (x, y), such that

𝜑𝑘 (𝑥1, . . . , 𝑥𝑑 , 𝑦1, . . . , 𝑦𝑃 ) ⇔ y = 𝑓 (𝑠𝑘 (x)).

To require that 𝑔(𝑠𝑘 (x)) = 𝑣 for some 𝑣 ∈ {−, 0, +}𝑃 , we use the formula 𝜑𝑘 and ask that 𝑦𝑖 ∼ 0
where ∼∈ {<,=, >} depending on whether 𝑣𝑖 is “−ž, “0ž, or “+ž. Since the set of x ∈ T𝜆 is semi-
algebraic thanks to Lemma A.3, and we have constructed formulas that require 𝑔(𝑠𝑘 (x)) = 𝑣 , the
lemma is proved. □
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