
MULTIPLE REACHABILITY IN
LINEAR DYNAMICAL SYSTEMS

Abstract. We consider reachability problems for linear dynamical sys-
tems. In dimension d these problems are specified by respective semi-
algebraic sets S,T ⊆ Rd of source and target states and a matrix
M ∈ Qd×d. The task is to determine whether there is a point in S whose
orbit under M intersects the target T in at least m distinct points. The
case m = 1 (mere reachability) can be reduced to mild generalisations
of the Skolem and Positivity Problems for linear recurrence sequences,
whose decidability has been open for many decades. The situation is
markedly different for multiple reachability, where m can be greater than
one. In this paper, we prove that multiple reachability is undecidable
already in dimension d = 10 with fixed multiplicity m = 9. Since our
undecidability construction also shows that decision procedures for di-
mension d ∈ {3, . . . , 9} would entail significant new results on effective
solutions of Diophantine equations, we subsequently focus on the case
d = 2, that is, multiple reachability in the plane. Here we obtain two
positive results. We show that multiple reachability is decidable if the
matrix M is a rotation and it is also decidable without restriction on
M for halfplane targets. The former result relies on a theorem in arith-
metic geometry, due to Bombieri and Zannier, concerning intersections
of algebraic subgroups with subvarieties.

1. Introduction

A linear dynamical system in ambient dimension d is specified by a d×d
matrix M ∈ Qd×d with rational entries. We are interested in understanding
and deciding properties of the system’s orbit for initial points p ∈ Qd, which
is defined as:

OM (p)
def
= {p Mn : n ∈ N} .

These are one of the simplest dynamical systems that we do not yet fully
understand. They have been extensively studied for almost a hundred years.
The motivations vary from finding solutions to Diophantine equations in
number theory, to deciding linear loop termination in computer science,
model checking simple programs etc. The text [EvdPSW03] is the prin-
cipal introduction to linear dynamical systems, featuring the main theorems
as well as a number of applications. See also [KKOW22] for a recent survey.

The core property we are interested in is reachability : does the orbit reach
some target set? More precisely, a general phrasing of the Reachability
Problem is the following. We are given respective source and target semi-
algebraic sets (defined by boolean combinations of polynomial inequalities)
S,T ⊂ Rd, and a matrix M ∈ Qd×d. The task is to decide whether there
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exists some point in the source set p ∈ S, whose orbit under M intersects
the target set. In other words, does there exist p ∈ S such that

OM (p) ∩T ̸= ∅?
A celebrated paper of Kannan and Lipton [KL86] showed that point-to-

point reachability (where both the source and target sets are singletons)
is decidable in polynomial time, but for many variants of the Reachabil-
ity Problem, decidability is open. Notably, point-to-hyperplane reachability
(also known as Skolem’s Problem) and point-to-halfspace reachability (also
known as the Positivity Problem) have been studied extensively in relation to
linear recurrence sequences, weighted automata, formal power series, model
checking, and loop termination, but remain unsolved in general. The current
state of the art (see [AOW19]) is that the Reachability Problem is decidable
in dimension d = 3, Skolem’s Problem is decidable in dimension d = 4, and
the Positivity Problem is decidable in dimension d = 5. In Theorem 2.3 we
note that the Reachability Problem can be reduced to its point-to-polytope
variant. This last result suggests that the Skolem and Positivity Problems
already capture much of the difficulty of the general (set-to-set) Reachability
Problem.

In this paper we embark on a study of the Multiple Reachability Prob-
lem. This is a small generalisation that does not merely ask whether the
orbit intersects the target set, but rather whether it intersects it in at least
m points where m ∈ N is part of the input. More precisely, we are given
semialgebraic sets S,T ⊂ Rd, a matrix M ∈ Qd×d, as well as a positive
integer m ∈ N. The task is to decide if there is a point in the source set
p ∈ S such that

|OM (p) ∩T| ≥ m.

Example 1.1. Here is a simple example:

S =
{
(x, y) ∈ R2 : y = x2

}
,T =

{
(x, y) ∈ R2 : x < y < −100

}
,

M =

(
2 0
0 −10/9

)
, and m = 5.

The answer to the multiple reachability problem for this instance is yes. Since
the linear map given by the matrix M is particularly simple we can see the
answer at once. Choose a point in S that is also in the second quadrant, e.g.
p := (−1, 1). Observe that multiplication with M2k+1, k ∈ N, sends p to
the fourth quadrant (x < 0 and y < 0), and the relation x < y is invariant
under this multiplication. Finally, from detM > 1 it is clear that the orbit
of p under M enters the target set T at least m = 5 times. Indeed it enters
the target infinitely often.

What is the difference between the Reachability and Multiple Reacha-
bility problems? Our first observation is that, surprisingly, the Multiple
Reachability Problem is computationally much more difficult than (single)
Reachability.
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1.1. Contributions.

Theorem 1.2. The Multiple Reachability Problem is undecidable in general
and is already undecidable in dimension d = 10 with multiplicity m = 9.

This is in stark contrast to the Reachability Problem—no natural variants
of which are known to be undecidable and which, as remarked above, can be
reduced to its point-to-polytope variant.

Intuitively, the lack of natural undecidable variants for reachability is be-
cause there is a single deterministic rule that governs the dynamics of the
system. In other words, these are programs without conditionals. In dynam-
ical systems which have some choice, i.e. when the dynamics is governed by
at least two maps, undecidable problems abound. For example, emptiness
of probabilistic automata [GO10] can be seen as a point-to-halfspace reach-
ability problem, but where we have at least two linear maps M1, M2 at our
disposal, to move the point to the target. The choice between the two dy-
namics is used to simulate a Turing machine. We have to proceed differently
for the proof of Theorem 1.2. We reduce from a variant of Hilbert’s tenth
problem. The instances are encoded in the source set S ⊆ Rd, so that points
p ∈ S contain some real solution to the given polynomial. Afterwards, the
matrix M is constructed in such a way that the orbit of p under M reaches
some hyperplane if and only if the coordinates of p are distinct natural
numbers. This last step is made possible by the fact that every univariate
polynomial of degree d satisfies the same linear recurrence relation. In the
reduction the matrix M is not diagonalisable, and the proof would not work
if we restricted M to be diagonalisable.

Hilbert’s tenth problem is undecidable for 9 variables, and consequently
our reduction implies that multiple reachability with algebraic initial and
hyperplane target sets is undecidable in dimension d = 19 for fixed m = 9.
Similarly, for semialgebraic initial and hyperplane target sets undecidability
follows in dimension d = 10. More generally, decidability of the Multiple
Reachability Problem in dimension d would give us algorithms to solve Dio-
phantine equations in d − 1 variables, which is open and considered very
difficult already for d = 3. For d ≥ 4, it is conceivable that whether a so-
lution exists might even be undecidable. Indeed, effectively solving Thue
equations (homogeneous equations in two variables) was only possible after
Baker’s work on linear forms in logarithms in 1966; See, for example, [Wal20].
Therefore, we focus our search for positive results on the two-dimensional
affine plane R2. Here we show:

Theorem 1.3. In dimension d = 2 the Multiple Reachability Problem is
decidable (i) when T is a halfspace (with S and M arbitrary) or (ii) when
M is a rotation (with S and T arbitrary).

Theorem 1.3(i) is proved using Kronecker’s Theorem on Diophantine ap-
proximation and quantifier-elimination for the first-order theory of real-
closed fields. Theorem 1.3(ii), is the main contribution of the present paper.
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Most decidability results about linear dynamical systems are proved using
Baker’s effective bounds on linear forms in logarithms. For the proof of
Theorem 1.3(ii), we make crucial use of bounds, due to Bombieri and Zannier,
on the height of algebraic points in the set of intersections between a variety
and algebraic subgroups of low dimension. To the best of our knowledge
this is the first use of such tools in the analysis of linear dynamical systems,
and it is intriguing that they are apparently needed to handle even special
cases of multiple reachability in the plane. The general case of the Multiple
Reachability Problem in the plane remains open.

1.2. Theorem 1.3(ii) Proof and Algorithm Overview. We reduce to
the following natural problem: Given a semialgebraic1 set T ⊂ Ck, and an
algebraic number λ with |λ| = 1, decide whether the intersection

{(λx1 , . . . , λxk) : x1 . . . , xk distinct positive integers} ∩T(1)

is empty. To prove that this problem is decidable, we give a procedure for
solving systems of polynomial (in)equalities in powers of an algebraic number
λ which is in the unit circle.

Every point in the set of powers of λ in (1) belongs to an algebraic group of
dimension 1. Algebraic groups are algebraic sets, i.e. solutions to a system
of polynomial equations, that have a group structure. In our case the group
operation is component-wise multiplication. Intuitively, the dimension is 1
because we have only one algebraic number λ and it lies on the unit circle. On
the other hand, the semialgebraic set T can be assumed to be the intersection
of an algebraic set, or variety, X, and another open semialgebraic set that is
specified as an intersection of strict polynomial inequalities.

There are a number of conjectures and results, variants of Mordell-Lang,
that roughly say: if the intersection between an algebraic group of low di-
mension and a variety is large then there must be some simple algebraic
reason for this. See the book [Zan12] by Zannier for an overview of this
theme. The salient result for us is by Bombieri and Zannier, that can be
found in the appendix of [Sch00]. This theorem says that there is a partition
of any variety X into X = X◦ ∪ X• such that the intersection of X◦ with
the union of all groups of dimension 1 has bounded Weil height; moreover,
inspecting the proof, one sees that the bound is effective by inspecting the
proof. This upper bound directly translates to a bound on xi in the inter-
section (1). Further results by Bombieri, Schmidt, Zannier and others are
used for computing the defining equations of the set X•, which contains all
solutions that are degenerate in some sense.

The algorithm computes the description of the subset X• as the set of
common zeros of finitely many polynomials, as well as the bound on the
exponents xi of λ. It then checks finitely many tuples (x1, . . . , xk) to see

1Here we mean that the image of T under the map f : Ck → R2k that extracts real and
imaginary parts of coordinates is semialgebraic.
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whether they form a solution. These tests use Tarski’s algorithm for quan-
tifier elimination in real closed fields as a subroutine.

1.3. Example. Here is a slightly more complex example, which also high-
lights the connection to program analysis. Consider the following program:

(x, y) with x3 + xy2 = 2y2

m← 2
while m ̸= 0 do{

x← 4x/5− 3y/5

y ← 3x/5 + 4y/5

if x = y + 1 then
m← m− 1

end if
end while

The curly brace on the left of the two assignments signifies that they are
simultaneous. Does this program terminate? More precisely, is there some
initialisation of the variables x, y ∈ R such that they satisfy the polynomial
relation2

x3 + xy2 = 2y2,(2)

and for which the program terminates? Let us reinterpret this question as
follows. First we notice that the vector (x, y) is being updated with the
matrix (

4/5 3/5
−3/5 4/5

)
,

which has the property that for all n ∈ N and θ = − cos−1(4/5):(
4/5 3/5
−3/5 4/5

)n

=

(
cosnθ − sinnθ
sinnθ cosnθ

)
.

We see that with every loop iteration, the updates rotate the point (x, y)
by the angle θ on the affine plane. So the question of the termination of
the program above is the question of whether there is some point p in the
cissoid defined above, that can be rotated into at least two points of the line
y = x− 1.

The algorithms we present in this paper can be used to answer questions
like the above (and more). In this example, the answer turns out to be

2This curve is the cissoid of Diocles, discovered around 180 BC. See [Loc67, Chapter 15].



6 MULTIPLE REACHABILITY IN LINEAR DYNAMICAL SYSTEMS

negative; there are no points in the cissoid that can be rotated by θ to two
different points on the line. Therefore, if the variables x, y are initialised
such that they satisfy the polynomial (2), the procedure above does not
terminate.

1.4. Related Work. Effective procedures for reachability in linear dynami-
cal systems have been investigated for a long time. There are various partial
results. A brief survey of the state of the art can be found in [KKOW22].

Directly related to the present paper, the semialgebraic-to-semialgebraic
(single) reachability problem was assiduously studied in [AOW19]. There,
this decision problem is shown decidable when the dimension is 3, using
Baker’s effective estimates. Furthermore, [AOW19] shows by way of hard-
ness that an algorithm for deciding this problem in dimension 4 would entail
the ability to effectively estimate Lagrange constants of certain transcen-
dental numbers. The proof of Theorem 2.3 appears implicitly in [AOW19,
Theorem 11].

More closely related to multiple reachability is the question of multiplicity
in linear recurrence sequences. A consequence of the Skolem-Mahler-Lech
theorem is that for any integer k, and any non-degenerate linear recurrence
sequence ⟨un⟩n∈N, there are only finitely many n for which un = k. Thus
one can ask what is the largest such number of n one can have when ⟨un⟩n∈N
ranges over non-degenerate linear recurrence sequences of a certain order.
Equivalently, what is the largest number of times a non-degenerate linear
dynamical system from a singleton source hits a hyperplane target? There
are many interesting and deep answers to this question, see [EvdPSW03,
Chapter 2.2] and references therein.

The questions that we consider in this paper are generalisations of the
Skolem Problem. There is another interesting generalisation in a different
direction, which happens to be undecidable for nontrivial reasons. Namely,
given k linear recurrence sequences over algebraic numbers

⟨u(1)n ⟩n∈N, ⟨u(2)n ⟩n∈N, . . . , ⟨u(k)n ⟩n∈N,

we are asked to decide whether there are natural numbers n1, . . . , nk such
that

u(1)n1
+ u(2)n2

+ · · ·+ u(k)nk
= 0.

This problem was conjectured to be undecidable by Cerlienco, Mignotte,
and Piras in [CMP87]. The conjecture was proved by Derksen and Masser
a few years ago in [DM15], for k = 557844. Similarly to the present paper,
they reduce from Hilbert’s tenth problem, and their proof requires that the
sequences not be diagonalisable.
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2. Definitions and Basic Properties

We define the natural numbers as the set N = {1, 2, 3, . . .}. Atomic for-
mulas of the first-order logic of reals are propositions of the type:

P (x1, . . . , xn) > 0,

where x1, . . . , xn are first-order variables ranging over R, and P ∈ Z[x1, . . . , xn]
is a polynomial with integer coefficients. Atomic propositions can be com-
bined with Boolean connectives, and we can also quantify over the set of
real numbers. This logic admits effective quantifier elimination via Tarski’s
algorithm [Tar51]. This means that given a formula:

∃x0 Φ(x0, x1, . . . , xn),

there is an equivalent formula Γ(x1, . . . , xn) that can be effectively computed.
In particular, given a sentence (i.e. a formula with no free variables), Tarski’s
procedure can be used to decide whether the sentence is true for real numbers.

Subsets S ⊆ Rd that can be expressed using formulas in the logic described
above, that is

S =
{
(x1, . . . , xd) ∈ Rd : Φ(x1, . . . , xd)

}
,

for some formula Φ, are called semialgebraic. Due to quantifier elimination,
semialgebraic sets are exactly the sets S ⊆ Rd that can be written as finite
unions of sets of tuples (x1, . . . , xd) ∈ Rd that satisfy simultaneously

P0(x1, . . . , xd) = 0,

P1(x1, . . . , xd) > 0,
...
Pk(x1, . . . , xd) > 0,

(3)

where Pi ∈ Z[x1, . . . , xd]. To see this, note that the intersection of real zeros
of polynomials P and Q is exactly the set of real zeros of the polynomial
P 2+Q2. In this setting, an algebraic set is the set of zeros of a polynomial
with integer coefficients. A hyperplane is the set of solutions of an affine
equation, i.e. (x1, . . . , xd) ∈ Rd for which

a1x1 + · · ·+ adxd + ad+1 = 0,

where ai are integers. A halfspace is the set of solutions of an affine inequal-
ity, and a polytope is the intersection of finitely many halfspaces. On R2,
a hyperplane is just a line, and a halfspace is called a halfplane. Finally,
when discussing semialgebraicity for subsets of Cd, we identify the latter
with R2d by taking real and imaginary parts.

A linear recurrence sequence is a sequence ⟨un⟩n∈N of rational numbers
that satisfies a linear recurrence relation

un = a1un−1 + · · ·+ adun−d,(4)
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for all n > d, where ai are rational numbers. The smallest positive number
d for which the sequence satisfies (4) is called the order of the sequence.
A linear dynamical system evolves according to the map x 7→ Mx for
M ∈ Qd×d. Linear recurrence sequences and linear dynamical systems are
essentially the same object, as summarised in the two following propositions.

Proposition 2.1. Let ⟨un⟩n∈N be a linear recurrence sequence of order d.
Then there exists M ∈ Qd×d such that

un = (Mn)1,d for all n ∈ N.

Proposition 2.2. Let M ∈ Qd×d and 1 ≤ i, j ≤ d. Then

⟨(Mn)i,j⟩n∈N
is a linear recurrence sequence of order at most d.

The proof of Proposition 2.1 is elementary, and Proposition 2.2 follows from
the Cayley-Hamilton theorem; See [EvdPSW03, Chapter 1] for more details.
Furthermore, both propositions are effective.

The characteristic polynomial of the linear recurrence (4) is

xd − a1x
d−1 − a2x

d−2 − · · · − ad.

Denote by Λ1, . . . ,Λk the distinct roots of this polynomial and by m1, . . . ,mk

their respective multiplicities. A linear recurrence sequence ⟨un⟩n∈N can also
be written as a generalized power sum, which is an expression of the form

un =
k∑

i=1

Pi(n) Λ
n
i ,

where Pi ∈ Q[n] are polynomials of degree at most mi − 1. Furthermore,
all generalized power sums satisfy linear recurrence relations with algebraic
coefficients. A consequence of this fact is that linear recurrence sequences are
closed under addition and product. More precisely, if ⟨un⟩n∈N and ⟨vn⟩n∈N
are two linear recurrence sequences, then so are the sequences ⟨un + vn⟩n∈N
and ⟨un · vn⟩n∈N.

These are all the necessary facts required to prove the following:

Theorem 2.3. The full Reachability Problem reduces to the point-to-polytope
variant.

The main idea appears implicitly in the proof of [AOW19, Theorem 11].

Proof. Suppose that we are given an instance of the semialgebraic to semi-
algebraic reachability problem. Let d ∈ N be the dimension of its ambient
space, S,T ⊆ Rd be the source and target sets respectively, and M be the
given matrix. Denote by ΦS, ΦT, the formulas defining the respective sets
S,T. Write x for the tuple of variables (x1, . . . , xd) and A for the d × d
matrix of variables (A1,1, . . . , Ad,d), and define the formula

Γ(x, A)
def
= ΦS(x) and ΦT(x ·A).
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The reachability problem asks whether there exists p ∈ Rd and n ∈ N such
that Γ(p,Mn) holds. Since the first-order theory of reals admits effective
quantifier elimination, we first use Tarski’s algorithm to produce a quantifier-
free formula Γ′(A), which is equivalent to the projection ∃x Γ(x, A). Now
the reachability problem is equivalent to the question of whether there exists
some n such that Γ′(Mn) holds. Since Γ′ is quantifier-free, it can be written
as a disjunction of formulas φ1, . . . , φm, for some m ∈ N, such that each ϕi

is of the form (3). It suffices to construct, for each φi, an instance of the
point-to-polytope reachability problem with the property that φi(M

n) holds
for some n if and only if the respective polytope is reached from some point
in S. We can then take the union of these polytopes as the single polytopic
target. Let φ be one of the disjuncts, written in the form

∧


P0(A1,1, . . . , Ad,d) = 0,

P1(A1,1, . . . , Ad,d) > 0,
...
Pk(A1,1, . . . , Ad,d) > 0.

Define for i ∈ {0, . . . , k} the sequences

ui,n
def
= Pi ((M

n)1,1, . . . , (M
n)d,d) , n ∈ N.

It follows from Proposition 2.2 and the closure of linear recurrence sequences
under component-wise addition and multiplication, that all the sequences
⟨ui,n⟩n∈N are themselves linear recurrence sequences. Write di for the order
of ⟨ui,n⟩n∈N. Applying Proposition 2.1 we construct matrices Ni of size di×di
for 0 ≤ i ≤ k, with the property that the upper-right corner of Nn

i is equal
to ui,n.

Unravelling the definitions, we see that for all n ∈ N, φ(Mn) holds if
and only if the upper-right corner of Nn

0 is 0, and the upper-right corners
of Nn

i , 1 ≤ i ≤ k are strictly positive. The latter can be interpreted as
a point-to-polytope reachability problem as follows. Let D :=

∑
di, and

construct a block diagonal matrix whose blocks are N0, . . . , Nk, and whose
size is D×D. Then the equivalent instance of the point-to-polytope problem
has as initial point p0 := (1, . . . , 1) ∈ RD, the matrix is N and the polytope
is the intersection of the following halfspaces. The closed halfspaces are
characterised by the normal vectors ∆(d0) and −∆(d0) (where by ∆(i) ∈ RD

we denote the vector whose components are all zero except the component
in position i whose value is 1), and the open halfspaces with normal vectors
∆(d1), . . . ,∆(dk). □

Why does a similar proof not work for multiple reachability? The critical
difference occurs after we obtain the projection Γ′. If there are two distinct
integers n1, n2 such that Γ′(Mn1) and Γ′(Mn2) hold, it does not necessarily
mean that there is a single p for which both Γ(p,Mn1) and Γ(p,Mn2)
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hold. Indeed, it is unlikely that such a reduction is possible for multiple
reachability, in light of the result of the next section.

3. Hilbert’s Tenth Problem and Linear Dynamical Systems

In this section we prove the undecidability of the multiple reachability
problem, with algebraic starting sets and hyperplane targets, by reducing
from a variant of Hilbert’s tenth problem.3 The variant that we reduce from
is the following:

Problem 3.1. Given a polynomial P (x1, . . . , xk) with integer coefficients,
decide whether there are distinct positive integers n1, n2, . . . , nk such that

P (n1, . . . , nk) = 0.

Proposition 3.2. Problem 3.1 is undecidable.

Proof. Let Q(x1, . . . , xn) be an arbitrary polynomial with integer coefficients.
For any partition P of {1, . . . , n}, define QP to be the polynomial obtained
by taking Q and for every A ∈ P replacing all variables xi, for i ∈ A, by a
single fresh variable. Clearly Q has a zero in positive integers x1, . . . , xn if
and only if one of the polynomials QP has a zero in distinct positive integers.
Since Hilbert’s tenth problem is undecidable (i.e. there is no procedure that
can decide whether a given polynomial has a zero in positive integers, see
[DMR76, Chapter 5]), it follows that Problem 3.1 is also undecidable. □

Hilbert’s tenth problem is known to be undecidable even when the number
of variables is fixed, equal to 9. As a consequence of the proof above we have
the following corollary.

Proposition 3.3 ([Jon82]). Problem 3.1 is undecidable for fixed k = 9.

We will now show that Problem 3.1 can be reduced to the multiple reach-
ability problem. This comprises two steps. First we prove that all univariate
polynomials of degree d satisfy the same linear recurrence relation, which is
then turned into a matrix form. In the second step we construct a certain
algebraic set from the polynomial of Problem 3.1.

Lemma 3.4. Let P be a univariate polynomial of degree d. The unique
sequence ⟨vn⟩n∈N that satisfies the recurrence

d+1∑
i=0

(−1)i
(
d+ 1

i

)
vn−i = 0, n > d+ 1.(5)

and whose first d+ 1 entries are P (1), P (2), . . . , P (d+ 1) is the sequence

⟨P (n)⟩n∈N.

3A sketch of this proof has already appeared in [KKOW22].
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Proof. Let T be the collection of selfmaps on the set of sequences of rational
numbers. One can give T the structure of a ring as follows: For all a, b ∈ T ,
define a+ b as:

(a+ b) (⟨un⟩n∈N)
def
= a(⟨un⟩n∈N) + b(⟨un⟩n∈N),

where addition of sequences is done component-wise:

⟨vn⟩n∈N + ⟨wn⟩n∈N
def
= ⟨vn + wn⟩n∈N.

Define a · b to be composition, i.e.

(a · b)(⟨un⟩n∈N)
def
= a(b(⟨un⟩n∈N)).

One can easily verify that (T ,+, ·) is a ring. Let us define a few elements of
this ring. First, with a little abuse of notation, for every q ∈ Q define:

q(⟨un⟩n∈N)
def
= ⟨qun⟩n∈N.

Next we define the shift and difference functions, respectively denoted s
and d, as:

s(⟨un⟩n∈N)
def
= ⟨un+1⟩n∈N, d(⟨un⟩n∈N)

def
= ⟨un+1 − un⟩n∈N.

We establish two facts about these two functions, namely:

Claim 3.5. s− 1 = d.

Claim 3.6. For all ℓ ∈ N and i > ℓ,

di(⟨nℓ⟩n∈N) = d(d · · · d︸ ︷︷ ︸
i times

(⟨nℓ⟩n∈N) · · · ) = 0.

Claim 3.5 is immediate. For Claim 3.6, we proceed by induction on ℓ. The
claim is clearly true for ℓ = 1, we prove that it is true for some arbitrary ℓ
given that it is true for ℓ− 1. Set i := ℓ+ 1. Then

dℓ(d(⟨nℓ⟩n∈N)) = dℓ(⟨(n+ 1)ℓ − nℓ⟩n∈N).

Since (n + 1)ℓ − nℓ is a polynomial of degree strictly smaller than ℓ, the
claim follows by the induction hypothesis and the fact that d is linear in the
obvious sense.

Let P be a univariate polynomial of order d. The two claims above imply
that

dd+1(⟨P (n)⟩n∈N) = (s− 1)d+1(⟨P (n)⟩n∈N) = 0.

Applying the binomial theorem to the expression (s− 1)d+1 (in the ring T ),
we conclude: (

d+1∑
i=0

(−1)i
(
d+ 1

i

)
sd+1−i

)
(⟨P (n)⟩n∈N) = 0.

For uniqueness, notice that if one fixes the d+ 1 first entries of a sequence,
the remainder is determined from the recurrence relation of that order. □
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Let us turn the statement of the above lemma into matrix form. To this
end let d ∈ N be a natural number. Denote the d + 1 coefficients of the
recurrence (5) by

qi
def
= (−1)i+1

(
k + 1

i

)
, 1 ≤ i ≤ d+ 1.

Let hd := (1, 0, . . . , 0) ∈ Rd+1 and define the matrix

Md
def
=


0 0 · · · 0 qd+1

1 0 · · · 0 qd
0 1 · · · 0 qd−1
...

...
. . .

...
...

0 0 · · · 1 q1

,

where the shaded block is the d × d identity matrix. It follows from the
discussion above that for all univariate polynomials P of degree d, we have(

P (1), P (2), . . . , P (d+ 1)
)
Mn

d h⊤
d = P (n), for all n ∈ N.(6)

To reduce the variant of Hilbert’s tenth problem to the algebraic-to-
hyperplane multiple reachability, we proceed as follows. Let F ∈ Z[y1, . . . , yn]
be an arbitrary polynomial with integer coefficients. We define an algebraic
set S ⊆ R2n+1 as:

(x1, . . . , xn+1, y1, . . . , yn) ∈ S ⇔

∧


F (y1, . . . , yn) = 0,

x1 = (1− y1)(1− y2) · · · (1− yn),

x2 = (2− y1)(2− y2) · · · (2− yn),
...
xn+1 = (n+ 1− y1)(n+ 1− y2) · · · (n+ 1− yn).

The idea is that to check whether a root (y1, . . . , yn) of F is in Nn, we need
only check that the sequence (m − y1) · · · (m − yn), m ∈ N, has n zeros.
More precisely, denote by M the (2n + 1) × (2n + 1) matrix whose first
(n + 1) × (n + 1) block is equal to Mn and the other entries are 0, and set
h := h2n.

Lemma 3.7. The following two statements are equivalent:
• The polynomial F has a root consisting of distinct positive integers.
• There is some p := (x1, . . . , xn+1, y1, . . . , yn) ∈ S and distinct posi-

tive integers r1, . . . , rn such that

p M ri h⊤ = 0, 1 ≤ i ≤ n.

Proof. (⇒) Let y1, . . . , yn be distinct positive integers that are a root of F .
Set

xi := (i− y1)(i− y2) · · · (i− yn),
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for all i ∈ {1, . . . , n+ 1}. Then p := (x1, . . . , xn+1, y1, . . . , yn) ∈ S by defi-
nition. The definition of the matrix M above (that has nonzero entries only
in the first (n+ 1)× (n+ 1) block) and (6) imply that for all r ∈ N we have

p M r h⊤ = (r − y1)(r − y2) · · · (r − yn).(7)

Hence the second statement of the lemma holds for the distinct positive
integers ri = yi.
(⇐) Let p and distinct positive integers r1, . . . , rn be such that the second
statement holds. Then (7) implies that the tuple (y1, . . . , yn) is a permu-
tation of the tuple of distinct positive integers (r1, . . . , rn). It then follows
from the definition of S that the same permutation is also a root of F . □

Proposition 3.2 and Lemma 3.7 imply that algebraic-to-hyperplane mul-
tiple reachability is undecidable, i.e. Theorem 1.2. Indeed the set S defined
above is algebraic,4 and h is the normal vector of some hyperplane (recall
that a point x is on the hyperplane with a normal vector h if and only if
x · h⊤ = 0).

More precisely, we have shown that a procedure to decide algebraic-to-
hyperplane multiple reachability in dimension 2n + 1 can be used to effec-
tively solve Diophantine equations with n variables. By projecting away the
coordinates y1, . . . , yn in the definition of S above, we obtain a semialge-
braic set. Hence a procedure to decide semialgebraic-to-hyperplane multiple
reachability in dimension n+ 1 can be used to effectively solve Diophantine
equations with n variables. In light of Proposition 3.3, we have the following
theorem.

Theorem 3.8. Algebraic-to-hyperplane multiple reachability is undecidable
in dimension 19, and semialgebraic-to-hyperplane multiple reachability is un-
decidable in dimension 10.

Effectively solving Diophantine equations is notoriously difficult. Even
Thue equations, i.e. equations of the type P (x) = m where P is a homoge-
neous polynomial, could only be solved effectively in the second half of the
twentieth century, after the work of Alan Baker [Bak90, Theorem 4.1]. As a
consequence, in the next section, we focus our efforts in understanding the
multiple reachability problem on the affine plane, i.e. when the dimension
is fixed at d = 2. As we shall see, even on the plane, multiple reachability
can be quite challenging.

In the undecidability proof of this section, the matrix M is not diago-
nalisable. It is interesting to explore the multiple reachability problem for
diagonalisable matrices, as the latter is a property that holds for generic ma-
trices. This is at least as hard as the Positivity Problem for diagonalisable
linear recurrence sequences.

4As mentioned in the previous section, the real vectors x for which P (x) = 0 and
Q(x) = 0 coincide with the real vectors x for which P (x)2 +Q(x)2 = 0.
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4. Algorithms on the Affine Plane

This section is devoted to proving Theorem 1.3. We give algorithms for
deciding multiple reachability for various targets on the affine plane. The
dimension d = 2 is fixed. The system is given in the form of a 2× 2 matrix
with rational entries. The eigenvalues of such a matrix have one of the
following forms: (a) a pair of complex conjugates λ, λ ∈ Q, (b) two real
roots ρ1, ρ2 ∈ Q ∩ R, or (c) a repeated real root ρ ∈ Q ∩ R. When the
eigenvalues are a pair of complex conjugates and |λ| = 1 we say that the
matrix is a rotation.

We will assume that λ/λ is not a root of unity, because this case is essen-
tially the same as the case where the eigenvalues are real. Matrices in which
no ratio of distinct eigenvalues is a roots of unity are called non-degenerate.

We begin by noting the first difference between arbitrary dimension and
the affine plane, as regards the multiple reachability problem: when the
target is a homogeneous hyperplane (in this case a line passing through the
origin), it cannot be reached more than once, unless the matrix has a very
special form. A consequence of this fact and the work in [AOW19], which
gives an algorithm for deciding single reachability in dimension 2, is that
multiple reachability is decidable for such targets. This is not the case in
dimension 10 or higher.

Proposition 4.1. Let p ∈ R2 \ {(0, 0)}, h a line going through the origin
given by the normal vector h ∈ R2, and M ∈ R2×2 a non-degenerate matrix.
Suppose there are distinct positive integers n,m ∈ N such that both Mn and
Mm send p to the line h, i.e.

p Mn h⊤ = p Mm h⊤ = 0.(8)

Then pMkh⊤ = 0 for all k ∈ N. Moreover, in this case, either one of the
eigenvalues of M is zero, or

M =

(
s 0
0 s

)
,

for some s ∈ R.

Proof. By assumption (8) the point h belongs to the two lines defined by
pMn and pMm, which pass through the origin. Since h ̸= 0, it follows that
there is some r ∈ R, r ̸= 0, such that

r p Mn = p Mm.

If M is not invertible then one of the eigenvalues is 0, and by putting M
into Jordan normal form, we can see that (8) cannot hold unless M is the
zero matrix, or the other eigenvalue is 1, in which case the conclusion holds.
If M is invertible then

r p = p Mm−n
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and hence r is an eigenvalue of Mm−n. By non-degeneracy, the matrix M

has eigenvalue R := r1/(m−n), which is real. The scaled matrix M̃ = M/R

has the property that for any k ∈ N, M̃k sends p to the line h if and only
if Mk does as well. The matrix M̃ has 1 as an eigenvalue, and for (8) to
hold, M̃ (and also M) has to be a stretching matrix, i.e. corresponding
to multiplication by a scalar s ∈ R. Consequently, ph⊤ = 0 and hence
pMkh⊤ = pskh⊤ = 0 for all k ∈ N. □

The hypothesis that the target line passes through the origin is important.
Indeed, perhaps surprisingly, when the target is a line that does not pass
through the origin, multiple reachability becomes more difficult. What is
the difficulty? First, the above proposition fails in that case. Such a target
can be reached multiple times.5

Second, almost all known effective methods are based on Baker’s work
on linear forms in logarithms. Such methods yield an effective time bound,
after which it is guaranteed that the orbit will not go in the target. This
bound however depends on the height of the initial points. It is not clear
how to apply these methods when the initial point is replaced by a set. One
possibility is to take the projection of the initial set (as in [AOW19] and the
last subsection of this paper), but then the multiple reachability problem is
reduced to a problem about intersections of algebraic subgroups with vari-
eties inside tori. There are finiteness results about such intersections, but
few of them effective.

To provide some more intuition, consider a linear map on R2. In general,
the effect of a linear map on a point consists of (a) a dilation (a shrinking
or stretching), and (b) a rotation. When both these effects are relevant, the
multiple reachability problem becomes difficult. The positive results that we
provide in this section solve decision problems where just one of the effects
is at play. For example, the proposition above is about a target that passes
through the origin, so the stretching effect of the linear map is not relevant.

4.1. Halfplane Targets. A semialgebraic set S is said to be bounded if
there exists real ρ > 0 such that S is contained in the open disk x2+ y2 < ρ.
We call the infimum among such ρ the radius of the set S. The infimum
among ρ ≥ 0 such that the set S intersects the open disk of radius ρ is
called the distance to the origin. Clearly, boundedness is expressible as
a formula in first-order logic, and the radius and distance to the origin are
real algebraic by quantifier elimination.

We prove Theorem 1.3(i), by giving an algorithm that decides multiple
reachability for halfplanes. To this end, let S be the initial semialgebraic
set, T the target halfplane, M a 2 × 2 matrix with rational entries and

5There is some work characterising when a line that does not pass through the origin is
reached at most once. For example, if the initial point is in Z2 and the eigenvalue |λ| > 1,
then for all but finitely many such integral initial points the target can be reached at most
once [BPS01].
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m ∈ N a positive integer, the minimum number of times we wish to enter
the target. We consider, separately, the case when M has complex conjugate
eigenvalues λ, λ, and the case when it has real eigenvalues. We begin with
the former.

Let p ∈ R2 be a point with polar coordinates (r, φ). It is possible to
show that there exist real numbers s, ϑ, ϑ0 such that for all n ∈ N the polar
coordinates of pMn are

(sr|λ|n, nϑ+ ϑ0 + φ).(9)

To see this, simply write pMn as |λ|npUn, where U is a rotation matrix and
then follow the second example in the Introduction. The numbers s, r and
|λ| are real algebraic whose defining formulas (in first-order logic of reals)
can be computed, while ϑ and ϑ0 are logarithms of algebraic numbers. We
will make use of the following fact from Diophantine approximation. It is a
corollary of [Cas59, Theorem 1 in Page 11]. For x ∈ R, denote by {x}2π the
unique real number in [0, 2π) such that, for some integer m, x = 2πm+{x}2π.

Lemma 4.2. If ϑ is an irrational multiple of 2π, we have

{{nϑ}2π : n ∈ N} is dense in [0, 2π].

Proof of Theorem 1.3 for non-real eigenvalues. If |λ| > 1, the algorithm an-
swers yes. The justification is as follows. When T is a halfplane, there exist
positive real numbers α0, ϕ1, ϕ2, with ϕ1 < ϕ2, such that for all α > α0 and
ϕ1 < ϕ < ϕ2, the point with polar coordinates (α, ϕ) is in T. This simply
means that the halfplane contains a cone minus a bounded set.

The matrix M is assumed to be non-degenerate, which implies that the ro-
tation angle ϑ in (9) is an irrational multiple of 2π. So by applying Lemma 4.2
to this number, we see that the intersection of the set

{nϑ+ ϑ0 + ϕ mod 2π : n ∈ N}(10)

and the interval (ϕ1, ϕ2) contains infinitely many points. From |λ| > 1, it
follows that the sequence of points pMn will enter the cone mentioned above,
which is a subset of T, infinitely many times.

Suppose now that |λ| < 1.6 When the halfplane T has distance to the
origin equal to 0, or when the source S is unbounded, the algorithm answers
yes, with a justification symmetric to the one above. Assume that T has
distance to the origin equal to δ > 0 and let S be bounded with radius
ρ. Choose some N ∈ N such that ρ|λ|N < δ, then for any source point
p ∈ S, and all n > N , pMn is not in the target T. To decide the multiple
reachability problem, consider the semialgebraic sets, defined for all n ∈
{0, 1, . . . , N} as

Sn
def
= {p ∈ S : pMn ∈ T} ,

and decide whether there are m among them that have nonempty intersec-
tion. □

6The rotation case |λ| = 1 is handled in the next subsection in a more general setting.
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We turn our attention now to the case where the eigenvalues of the matrix
M are real. We do a case analysis depending on whether the eigenvalues are
distinct or not, and whether they are positive or not.

4.1.1. Diagonalisable M with distinct positive eigenvalues. In Jordan normal
form, the matrix M is BDB−1 where D is the diagonal matrix and B is an
invertible matrix with real algebraic entries. We can replace S by S ·B, and
the target set by B−1 ·T. As a consequence we can simply assume that

M =

(
ρ1 0
0 ρ2

)
.

We will also assume without loss of generality that ρ1 > ρ2 > 0. The
algorithm rests on the following lemma.

Lemma 4.3. Let M be as above, H a halfplane, p ∈ R2 a point, and
p0,p1, . . . its orbit under M . The orbit can switch from H to R2 \ H, or
conversely, at most twice. In particular, the orbit is either ultimately in H
or ultimately in R2 \H.

Proof. We begin by observing that for all real numbers a1, a2, a3, not all
zero, and positive reals b1, b2, the function f : R→ R, defined as

x 7→ a1b
x
1 + a2b

x
2 + a3,(11)

has at most two zeros. Indeed, since f is continuous, by Rolle’s theorem,
between any two zeros of f , f ′ has a zero. As a consequence, if f had more
than two zeros, f ′ would have more than one zero. But since f ′ has the form
α1b

x
1 + α2b

x
2 for real numbers α1, α2, this is impossible.

Let c1, c2, c3 be real numbers such that the point (x, y) belongs to the
halfplane H if and only if

c1x+ c2y + c3 > 0.

The orbit of such a point under M is (xρn1 , yρn2 ). Consider now the expression

c1xρ
n
1 + c2yρ

n
2 + c3.(12)

From the observation about the zeros of (11) above, this expression as a
function of n may change sign at most twice, which establishes the lemma.

□

From this proof we observe that when the halfplane is given by a homo-
geneous inequality, the orbit cannot leave the halfplane and come back. For
other cases, we proceed to prove that the gaps between consecutive visits to
the halfplane H cannot be longer than 3.

4.1.2. Diagonalisable M with a single negative eigenvalue. Suppose that the
matrix M is

M =

(
ρ1 0
0 ρ2

)
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where ρ1 < 0 and ρ2 > 0. We do not make any assumptions on |ρ1| and
|ρ2|. Consider a starting point (x, y) ∈ R2 and a halfplane H defined by
c1x+ c2y > c3. The orbit of (x, y) visits H at time n if{

c1x|ρ1|n + c2yρ
n
2 > c3, n even,(13a)

−c1x|ρ1|n + c2yρ
n
2 > c3, n odd.(13b)

Depending on the signs of x and y, one of the inequalities implies the other.
Without loss of generality suppose (13a) implies (13b). By Lemma 4.3, the
set of n satisfying (13a) forms an interval in N. It follows that the gaps
between two consecutive visits from (x, y) to H is at most 2.

4.1.3. Diagonalisable M with two negative eigenvalues. Next, suppose that
ρ1 < 0 and ρ2 < 0. Clearly, for all c1, c2, c3 ∈ R with c3 ≤ 0 and c1, c2 not
both zero, the inequality c1ρ

n
1 + c2ρ

n
2 > c3 has infinitely many solutions. We

thus focus on the case that c3 > 0. Here we prove that the gap between two
consecutive visits of the orbit of (x, y) ∈ R2 to H is at most 3. To this end,
let (x, y) ∈ R2, and define the function F : R→ R,

F (t)
def
= c1x|ρ1|t + c2y|ρ2|t.

Then we have that for n ∈ N,

c1xρ
n
1 + c2yρ

n
2 =

{
F (n) if n is even,
−F (n) if n is odd.

(14)

Assuming that c1, c2 and x, y are nonzero (otherwise we would have an even
simpler case), and ρ1 ̸= ρ2, we see that the function F (t) is bounded for
positive reals t if and only if |ρ1| ≤ 1 and |ρ2| ≤ 1. If F (t) is unbounded,
then from (14) we see that for any (x, y) ∈ R2 nonzero, the system will enter
the halfplane H infinitely many times.

If on the other hand F (t) is bounded in R+ then the following two in-
equalities cannot hold simultaneously:

c1xρ1 + c2yρ2 < c3

c1xρ
3
1 + c2yρ

3
2 > c3.

Indeed, the two expressions on the left hand side have the same sign, however
the second one is smaller in magnitude due to |ρ1| ≤ 1 and |ρ2| ≤ 1. The
claim that the gaps between two consecutive visits from (x, y) to H is at
most 2 follows.

4.1.4. Non-diagonalisable M with a repeated eigenvalue. A version of Lemma 4.3
also holds in case M has a repeated eigenvalue ρ. In this case, every orbit
under M can switch from H to R2 \H, or conversely, at most once. Indeed,
by a change of basis, we can assume that M has the form

M =

(
ρ 1
0 ρ

)
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Then the expression corresponding to (12) is

(nxc2ρ
−1 + c2y + c1x)ρ

n + c3.

If ρ > 0, then it is clear that this expression can change sign at most once as
n ranges over N. If, on the other hand, ρ < 0, we can do a similar analysis
as above. If |ρ| > 1 then the halfplane is entered infinitely often. If |ρ| ≤ 1,
we can prove, as we did above, that the gaps between two consecutive visits
in H is at most 2.

4.1.5. M with a zero eigenvalue. This case is one-dimensional, and it can be
shown directly that the orbit can switch from H to R2 \H (or vice versa) at
most once.

Having handled all the cases, we are now ready to give a proof of Theo-
rem 1.3 for real eigenvalues.

Proof of Theorem 1.3(i) for M with real eigenvalues.
Lemma 4.3 and the case analysis above, implies that any orbit that en-
ters H at least m times must harbour a segment of m visits to H whose
gaps between consecutive visits is at most 3. In other words, the orbit of p
enters T at least m times if and only if there exist n1, . . . , nm ∈ N such that

pMni ∈ T and 0 < ni+1 − ni ≤ 3 for all ni.

This contiguous multiple reachability question can easily be reduced to a
union of single reachability queries. Indeed, an orbit contains a pattern
(of visits and not visits to H) of length 3m if and only if it reaches a cer-
tain polytope subset P of R2; A formula defining P can be constructed by
considering the sets

{
x ∈ R2 : Mkx ∈ H

}
and

{
x ∈ R2 : Mkx /∈ H

}
for

0 ≤ k ≤ 3m. Thus multiple reachability is reduced to at most 23m instances
of single reachability from S to P, which can be solved by invoking the
algorithm from [AOW19]. □

4.2. Rotations. This section is dedicated to the proof of Theorem 1.3(ii),
which says that semialgebraic-to-semialgebraic multiple reachability is de-
cidable on the plane for rotations. First we give the simple reduction to
solving systems of polynomial inequalities in powers of some λ, as discussed
in the introduction. Afterwards we will give an overview of the proof.

4.2.1. Reduction. Let S,T ⊆ R2 be the source and target semialgebraic sets,
given by the formulas ΦS,ΦT of first-order logic of reals. Further let M be a
matrix whose eigenvalues are the pair λ, λ on the unit circle, that is |λ| = 1,
and let m ∈ N. We have to give a procedure for deciding whether there
exists some p ∈ S and distinct positive integers x1, . . . , xm ∈ N such that

p Mxi ∈ T,

for all i ∈ {1, 2, . . . ,m}.
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We proceed by eliminating the existential quantifier in the decision ques-
tion. To this end, let v = (v1, v2) be a tuple of variables, let V1, . . . , Vm be
2× 2 matrices of fresh variables, and consider the following formula:

Γ(v, V1, . . . , Vm)
def
= ΦS(v) ∧

m∧
i=1

ΦT (v Vi) .

The multiple reachability decision problem asks whether there is some p ∈ R2

and distinct positive integers x1, . . . , xm such that

Γ(p,Mx1 , . . . ,Mxm)(15)

holds. Eliminating the existential quantifiers for v from Γ, we effectively
obtain another formula Γ′(V1, . . . , Vm) such that (15) holds for some point
p if and only if Γ′(Mx1 , . . . ,Mxm) is true. Tuples of reals that satisfy Γ′

form a semialgebraic set; which can be written as a finite union of sets of the
form (3), that is a system of one polynomial equality and a finite number of
polynomial inequalities. Each set in this union can be treated separately, so
let P0, . . . , Pℓ be polynomials (with integer coefficients) of one of the sets:

Ψ(V1, . . . , Vm)
def
=
∧


P0(V1, . . . , Vm) = 0,

P1(V1, . . . , Vm) > 0,
...
Pℓ(V1, . . . , Vm) > 0.

We want to prove that we can decide whether there are distinct positive
integers x1, . . . , xm such that

Ψ(Mx1 , . . . ,Mxm)(16)

holds. We will simply call any such tuple (x1, . . . , xm) a solution.
By diagonalisation there are algebraic numbers c1, . . . , c4 ∈ Q such that

for all n ∈ N

Mn =

(
c1λ

n + c1λn c2λ
n + c2λn

c3λ
n + c3λn c4λ

n + c4λn

)
.

So when polynomials P0, . . . , Pℓ are instantiated with Mx they can be seen
as polynomials in λx and λ

x
= λ−x; in other words there are polynomials

Q0, . . . , Qℓ with algebraic coefficients such that

Pi(M
x1 , . . . ,Mxm) = Qi(λ

x1 , λ−x1 , . . . , λxm , λ−xm),

for 0 ≤ i ≤ ℓ and all tuples of integers (x1, . . . , xm) ∈ Zm. Let us assume at
once that as part of the strict inequalities we have ones of the type

λxj + λ−xj > λxk + λ−xk ,(17)

for j ̸= k to ensure that the xi are all distinct. This is without loss of gener-
ality because any solution would certainly belong to one of these augmented
semialgebraic sets. We will show how to decide if there is a solution.
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4.2.2. Proof Overview. We begin in the next subsection by considering the
case that there are only polynomial inequalities to satisfy. This is much eas-
ier: Intuitively, the rotation angles are dense in [0, 2π], and the set is made
out of strict polynomial inequalities and therefore is open in the usual topol-
ogy. This in turn means that if the target set is non-empty, we can rotate
into it. The proof uses a theorem of Kronecker on simultaneous Diophantine
approximation.

In subsection 4.2.4, we develop the theory of algebraic subgroups and
linear tori to the extent that is needed in the sequel. As we described briefly
in the introduction, the reason for considering algebraic subgroups is because
all (λx1 , . . . , λxm) for xi ∈ Z belong to an algebraic subgroup of dimension 1.
We want to apply the result of Bombieri and Zannier which says that the
intersection of algebraic subgroups of dimension 1 and a variety has bounded
(Weil) height. For us the variety (which we denote by X) is just the zero set
of the polynomial Q0.

It is possible for a variety to contain a whole algebraic subgroup. When
this happens, the height of points in the intersection cannot be bounded.
These cases need to be treated by separate means. This is the reason for the
partition X = X◦∪X•, as those degenerate points are contained in X•. The
end goal of subsection 4.2.4 is to show that we can compute the polynomial
equations that define X•, and to state a structure theorem, giving more
information about this subset.

In subsection 4.2.5 we introduce heights and the Zannier-Bombieri theo-
rem. In the end we tie these three subsections together by describing how
the theorems can be used to decide the existence of solutions. The algo-
rithm is conceptually simple. To check whether there is a solution in X◦

we use the height bound to derive an upper bound on the absolute value
of the exponents |xi|, and then simply try every one of the finitely many
possibilities. If no solution is found, it remains to check whether there is
one in X•. To this end, the algorithm constructs the defining polynomials of
X•, and by exploiting the structure theorem, the check for solutions in X•

is reduced to the problem of whether there is a solution in a set defined by
strict polynomial inequalities.

4.2.3. System of Inequalities. We prove a slightly more general result, where
we allow (x1, . . . , xm) to range over members of a (additive) subgroup of Zm.

Lemma 4.4. Let Λ ⊆ Zm be a subgroup, where the group operation is
component-wise addition. Let λ ∈ Q be as above, and suppose that we are
given polynomials S1, . . . , Sk in 2m variables and algebraic coefficients, such
that Si(z1, z1, . . . , zm, zm) is real-valued for all complex zj and all i. Then
there is a procedure to decide whether there exists (x1, . . . , xm) in Λ, with
positive coordinates, simultaneously satisfying

Si(λ
x1 , . . . , λ−xm) > 0, for all i ∈ {1, . . . , k}.
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Proof. Suppose that the subgroup Λ is given as the integer points in the
kernel of a matrix A with integer entries, m rows, and m′ ≤ m columns. We
have:

Λ = {x ∈ Zm : x A = 0} .
First check that this subgroup contains elements with positive coordinates,
if it does not, clearly we answer no.

Denote by T the unit circle in the complex plane. We will write z for
the vector (z1, . . . , zm) and for any vector b = (b1, . . . , bm) of length m, we
abbreviate

zb = zb11 · · · z
bm
m .

Denote by a1, . . . ,am′ the columns of A, and define the following semialge-
braic sets:

R
def
=
{
z ∈ Tm : zai = 1 for all 1 ≤ i ≤ m′} ,

R′ def
=
{
z ∈ R : Si(z1, z

−1
1 , . . . , zm, z−1

m ) > 0 for all 1 ≤ i ≤ k
}
.

Intuitively, the set R is all the numbers with coordinates in the unit circle
and exponents that belong to the subgroup Λ. In particular, (λx1 , . . . , λxm)
is in R if and only if x ∈ Λ. Meanwhile, R′ is the subset of such numbers
that also satisfy the polynomial inequalities. Clearly, if R′ is empty, there
are no solutions; but if it is not empty we argue below that there will always
be at least one solution. Since R′ is a semialgebraic set, we can use Tarski’s
algorithm to decide whether it is empty or not.

To show that R′ ̸= ∅ implies existence of a solution we use the following
theorem due to Kronecker on simultaneous Diophantine approximations.

Theorem 4.5 (Theorem IV in Page 53 of [Cas59]). Let

Lj(y) = Lj(y1, . . . , ym′), 1 ≤ j ≤ m,

be m homogeneous linear forms in any number m′ of variables yi. Then the
two following statements about a real vector α = (α1, . . . , αm) are equivalent:

(1) For all ϵ > 0 there is an integral vector a = (a1, . . . , am′) such that
simultaneously

|Lj(a)− αj | < ϵ, 1 ≤ j ≤ m.

(2) If u = (u1, . . . , um) is any integral vector such that:

u1L1(y) + · · ·+ umLm(y)

has integer coefficients, considered as a form in the indeterminates
yi, then

u1α1 + · · ·+ umαm ∈ Z.

In order to apply this theorem, we define our linear forms Li as follows.
By putting A in a row-reduced echelon form, finding a basis and multiplying
with a suitable scalar, we can compute a set of integral vectors b1, . . . , bm′
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that generate Λ. Write λ = exp(ϑ2πi), where the angle ϑ is not a rational
number, because λ is not a root of 1. For 1 ≤ j ≤ m define:

Lj(y1, . . . , ym′)
def
=

m′∑
i=1

ϑ bi,j yi.

Suppose that R′ is nonempty, and choose some element ζ ∈ R′ and write it
as: (

exp(α12πi), . . . , exp(αm2πi)
)
.

Let u = (u1, . . . , um) ∈ Zm be an integral vector such that
∑

uiLi(y) has
integer coefficients, considered as a form in the indeterminates yi. A small
computation shows that since ϑ is irrational, for such u we must have

u B = 0,

where B is the matrix that has the vectors b1, . . . , bm′ as columns. This
means that such vectors u belong to the orthogonal complement of the linear
subspace V ⊆ Rm, spanned by b1, . . . , bm′ . By virtue of ζ belonging to R′

and hence also R, we have that (α1, . . . , αm) belongs to V , and consequently∑
uiαi = 0. We have proved that Statement 2 in the above theorem holds

for our real vector α. Applying the theorem gives us Statement 1, namely
that there are integral vectors a that make Lj(a) get arbitrarily close to
αj . As a ranges over Zm′ , (L1(a), . . . , Lm(a)) range over ϑΛ, which in turn
means that

(λL1(a)/ϑ, . . . , λLm(a)/ϑ) ∈ R,(18)

and gets arbitrarily close to ζ. Finally, since R′ is an open subset of R, by
choosing ϵ small enough, we get some a such that the tuple of (18) belongs
to the subset R′.

It remains to check that we can find one such a such that the exponents in
(18) are positive. We know that the subgroup Λ has elements with positive
coordinates, and this is in fact sufficient, due to an equidistribution theorem
of Weyl that can be found in the section starting at Page 64 of [Cas59]. □

4.2.4. Algebraic Subgroups and Tori. We begin with a few definitions. The
general theory is developed more extensively in [Sch96], [Sch00], and espe-
cially in [BG07, Chapter 3]. We borrow from the latter freely.

It is convenient in the rest of this section to set n := 2m, where m is
the number of times we want to enter the target set. A variety Y in affine
n-dimensional space Qn is defined to be the set of tuples (y1, . . . , yn) which
satisfy a system of polynomial equations fi(y1, . . . , yn) = 0, where each fi
has algebraic coefficients. We say that a variety is irreducible if it cannot
be written as the union of two proper subvarieties.

We define Gn to be the set of tuples (z1, . . . , zn) of non-zero algebraic
numbers. In other words it is the subset of Qn satisfying z1 · · · zn ̸= 0. It
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has a group structure under component-wise multiplication:

(y1, . . . , yn) · (z1, . . . , zn) = (y1z1, . . . , ynzn).

The variety that we are interested in, which we will denote by X ⊆ Gn,
is the zero set of our polynomial Q0, conjoined with polynomial equations

zjzj+1 − 1 = 0,

where 1 ≤ j ≤ n is an odd number, to ensure that the conjugacy relations
hold. We assume that X is irreducible, for otherwise we can factorize the
polynomials and treat the irreducible components in turn. We will effectively
find points in the intersection of this variety and all algebraic subgroups of
dimension 1, which we now define.

An algebraic subgroup is a subvariety of Gn that is also a subgroup.
As an example, given an additive subgroup Γ ⊆ Zn, we can see that it
determines an algebraic subgroup

HΛ
def
= {(z1, . . . , zn) ∈ Gn : za11 za22 · · · z

an
n = 1 for all a ∈ Γ} .

In fact every algebraic subgroup is of this type, [BG07, Corollary 3.2.15].
Further, if Λ is a subgroup of Zn of rank n − r then HΛ is an algebraic
subgroup of dimension r. By dimension here we mean the dimension of
the variety, see for example [Har77, Definition on Page 5]. One way of
defining the dimension of a variety X is as the maximum length of a chain
X0 ⊂ X1 ⊂ · · · ⊂ Xk of irreducible subvarieties of X.

We prove that powers of λ belong to algebraic subgroups of dimension 1,
as remarked in the introduction.

Lemma 4.6. For all (a1, . . . , ak) ∈ Zk, the point

(λa1 , . . . , λak)

belongs to an algebraic subgroup of dimension 1.

Proof. If all ai = 0, then the lemma clearly holds, so suppose that there
is some j such that aj ̸= 0. The tuple (a1, . . . , ak) belongs to the linear
subspace that is defined by the linear equations:

aixj − ajxi = 0, i ̸= j, and 1 ≤ i ≤ k.

These are k − 1 equations that define a linear subspace V . It follows that
Λ := V ∩Zk is generated by a set of k− 1 vectors (and no smaller set). This
in turn implies that the point in the statement of the lemma belongs to the
algebraic subgroup HΛ, which is a subgroup of dimension 1. □

We will denote by H1(n) the union of all algebraic subgroups of Gn that
have dimension 1; the parameter n will be omitted when the ambient dimen-
sion is understood. We are interested in the intersection

H1 ∩X,
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as according to the lemma above, this will contain all

(λx1 , λ−x1 , . . . , λxm , λ−xm)

for which

Q0(λ
x1 , λ−x1 , . . . , λxm , λ−xm) = 0,

where xi are integers.
In order to analyse the intersection above, the variety X will be parti-

tioned into two subsets which we now define. A linear torus is an algebraic
subgroup that is irreducible. A torus coset is a coset of the form gH where
H is a linear torus and g ∈ Gn.

Given any subvariety Y ⊆ Gn we denote by Y • the union of all nontrivial
torus cosets that are contained entirely in Y , in other words:

Y • def
=
⋃
{gH a torus coset : gH ⊆ Y and nontrivial} .

Also define

Y ◦ def
= Y \ Y •.

We give another definition of Y • which is effective and apply it to X.
Recall that for a vector of integers a ∈ Zn we write

za = za11 · · · z
an
n .

Let A be an n× n matrix with integer entries, and denote by A1, . . . , An its
columns. We write by φA : Gn → Gn the map

φA(z)
def
=
(
zA1 , . . . , zAn

)
.

One can show that φAB = φB ◦ φA, and as a consequence for matrices A
with determinant ±1, φA is an isomorphism7 with inverse φA−1 . Such an
isomorphism is called a monoidal transformation. The group of n × n
integer matrices with determinant ±1 is the special linear group, denoted
SL(n,Z).

We state here some important basic results related to the structure of
algebraic subgroups. Recall that we have used the notation ∥a∥ for the ℓ1

norm; when A is a matrix, we denote by ∥A∥ the maximum of ℓ1 norms of
its columns.

Proposition 4.7 ([BG07, Proposition 3.2.10 and Corollary 3.2.9]). Let HΛ

be a linear torus, where Λ is a subgroup of Zn of rank n−r and suppose that
Λ has n− r independent vectors of norm at most N . Then there is a matrix
A ∈ SL(n,Z) with ∥A∥ ≤ n3Nn−r and

∥∥A−1
∥∥ ≤ n2n−1N (n−1)2, such that

φA(1n−r ×Gr) = HΛ,

7This means that it is a group homomorphism that is also a morphism of algebraic
varieties.



26 MULTIPLE REACHABILITY IN LINEAR DYNAMICAL SYSTEMS

where

1n−r
def
= { (1, . . . , 1)︸ ︷︷ ︸

unit of Gn−r

}.

From the bounds on A, we can effectively compute such a matrix given
n − r independent vectors of Λ. Next, let X ⊆ Gn be our subvariety. We
say that an algebraic subgroup H of Gn is maximal in X if H ⊆ X and H
is not contained in a larger subgroup of X.
Proposition 4.8 ([BG07, Proposition 3.2.14]). Let X ⊆ Gn be a subvariety,
defined by polynomial equations fi(x) :=

∑
ci,ax

a = 0, 1 ≤ i ≤ k, and let
Ei be the set of exponents appearing in the monomials of fi. Let H be a
maximal algebraic subgroup of Gn contained in X. Then H = HΛ where Λ
is generated by vectors of type a′i − ai, with a′i,ai ∈ Ei, for i = 1, . . . , k.

The first proposition above says that linear tori of dimension r are simply
isomorphic to Gr, and that the isomorphism is given in terms of a monoidal
transformation that we can compute. (An analogous statement holds also
for general algebraic subgroups; however the component 1n−r is replaced by
a finite subgroup of Gn−r in the general case.) The second proposition tells
us that maximal algebraic subgroups contained in a variety X are defined
simply by the exponents of monomials that appear in the definition of X.

The two propositions above have the following important consequence.
If gH ⊆ X is a maximal torus coset (meaning that it is not contained in
another torus coset), then H is one of the components of a maximal algebraic
subgroup H ′ of the variety g−1X. Proposition 4.8 implies that there are
finitely many such H ′, that we can effectively compute them, and further
that they are independent of g—note that only the exponents matter in the
proposition, not the coefficients. Since it is possible to compute the equations
of each component of H ′ by factorising in the number field Q(λ), we have:
Lemma 4.9. We can effectively construct a (possibly empty) set TX of
positive-dimensional linear tori such that if gH ⊆ X is a maximal torus
coset, then H ∈ TX , and for every H ∈ TX there is some torus coset gH ⊆ X
which is maximal.

From this lemma, another way of defining the subset X• is

X• =
⋃
{gH : g ∈ Gn, H ∈ TX , and gH ⊆ X} .

Although we can effectively construct the subgroups H, we do not yet have
an effective method of constructing the union of all maximal cosets gH that
are contained in X. This is done in the following lemma.
Lemma 4.10 ([BG07, Theorem 3.3.9]). Let X ⊆ Gn be a subvariety and H
a linear torus of dimension r ≥ 1. Then there exists a matrix A ∈ SL(n,Z),
which can be computed, such that⋃

gH⊆X

gH = φA(X1 ×Gr),
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where X1 ⊆ Gn−r is a subvariety, whose defining polynomials can be com-
puted.

Proof. Using Proposition 4.8 we can conclude that H = HΛ where Λ is a
subgroup of Zn of rank n − r, and from Proposition 4.7, we can compute a
matrix A, such that H = φA(1n−r ×Gr). If we define X̃ to be φ−1

A (X), we
have ⋃

gH⊆X

gH =
⋃

g·(1n−r×Gr)⊆X̃

g · (1n−r ×Gr).

Note that since A can be computed, so can the polynomials of X̃. Let
f1, . . . , fk be these defining polynomials of X̃. Then g · (1n−r ×Gr) being a
subset of X̃ means that

fi(g1, . . . , gn−r, yn−r+1, . . . , yn) = 0, 1 ≤ i ≤ k,

are identically satisfied in yn−r+1, . . . , yn. This is just a set of polynomial
equations in indeterminates g1, . . . , gn−r, i.e. a subvariety of Gn−r, which
we call X1. So if g ∈ X1, then g · (1n−r × Gr) ⊆ X̃, or equivalently φA(g ·
(1n−r ×Gr)) ⊆ X. The lemma follows. □

To summarise, in this section we proved that (i) we can compute the finite
set of subgroups H, such that gH is some maximal coset contained in X.
We called this finite set of subgroups TX . We also showed (ii) that for any
H ∈ TX the union of all maximal cosets gH that are contained in X are
isomorphic to X1 ×Gr for some r ≥ 1. Furthermore, the defining equations
of X1 can also be computed and the isomorphism map too.

These facts give sufficient information to decide if there are any solutions
in X•. Next we discuss heights and the Bombieri-Zannier theorem.

4.2.5. Heights. The height of a point z in Qn is a central notion in Diophan-
tine geometry. It is used to measure the arithmetic complexity of z. For
more details the reader should consult, for example, Chapter 1 of [BG07].
For our purposes, it suffices to define the height as follows. Let K := Q(λ)
be the number field that we work in. There is a way of choosing absolute
values MK in this field, such that the product formula holds. Define

log+ t
def
= max(0, log t).

Then the height8 of a point z = (z1, . . . , zn) ∈ Kn is defined as:

h(z)
def
=
∑

v∈MK

max
j

log+ |zj |v.

We are interested in specific points of the form (λx1 , . . . , λxn), where xi ∈ Z.
The height of such points has the following properties:

8The long name is the absolute logarithmic (Weil) height.
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Lemma 4.11. Let x ∈ Zn, and denote by M = maxj |xj |. Then

Mh(λ) ≤ h
(
(λx1 , . . . , λxn)

)
≤ 2Mh(λ).

Proof. By the definition of height and absolute value we have:

h
(
(λx1 , . . . , λxn)

)
=
∑

v∈MK

max
j

log+ |λxj |v =
∑

v∈MK

max
j

log+ |λ|xj
v .

Since for every absolute value | · |v, |λ|v|λ−1|v = 1, it follows that∑
v∈MK

max
j

log+ |λ|xj
v ≤M(h(λ) + h(λ−1)),

and since h(α) = h(α−1) for every algebraic α (see [BG07, Lemma 1.5.18]),
we get the upper bound. For the lower bound:

h
(
(λx1 , . . . , λxn)

)
≥ h(λM ) = Mh(λ).

□

The main fact that allows for a procedure to decide multiple reachability
for rotations is the following theorem on heights of points in X◦ ∩ H1, due
to Bombieri and Zannier:

Theorem 4.12 ([Sch00, Theorem 1, Page 524]). Let X ⊆ Gn be a subvari-
ety. Then there exists an effective bound b ∈ N depending only on X such
that for all algebraic points z ∈ Gn,

z ∈ X◦ ∩H1 ⇒ h(z) ≤ b.

The theorem cited in [Sch00] does not explicitly state that the bound is
effective, but upon a closer inspection of the proof one can see that almost
all the bounds are explicit, with the exception of the points (c∗1, . . . , c∗h) ∈ Zh

which are chosen to be outside a finite number of linear subspaces of Qh. It
is plain that we can effectively construct such a point.

Now we have all the tools to describe the algorithm and justify its cor-
rectness.

4.2.6. Algorithm. The procedure first searches for solutions in X◦. Let b ∈ N
be an upper bound on the height of algebraic points in the intersection of H1

(which is the union of all subgroups of dimension 1) and X◦. Such an upper
bound can be computed with Theorem 4.12. From Lemma 4.6 we know that
for all integers x1, . . . , xm ∈ Z, the algebraic points(

λx1 , λ−x1 , . . . , λxm , λ−xm
)

(19)

all belong to H1. So if any of the points in (19) is in X◦ it is also in
the intersection X◦ ∩ H1. The upper bound b on the height of points in
this intersection translates to an upper bound on the exponents ∥x∥ due to
Lemma 4.11. It remains to check whether any of the finitely many points
(19), with ∥x∥ ≤ b, satisfy the polynomial equality Q0 = 0 and inequalities
Qi > 0, 1 ≤ i ≤ ℓ. These checks are performed by using Tarski’s algorithm,
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making sure that the exponents are distinct and positive. If a solution is
found, we return yes, otherwise we continue the search in X•.

Now, by applying Lemma 4.9 we compute the defining polynomials of tori
that are in the set TX . Recall that this set contains all positive dimensional
tori, which have a maximal coset entirely contained in X. If TX is empty,
so is the set X•, and we are done: the algorithm returns no, because no
solutions were found in X◦ and X• = ∅.

So suppose that TX is nonempty. The procedure searches for solutions
in all the elements of TX in turn, in the following way. Let H ∈ TX be an
element, of dimension r. By definition, this means that H is a torus for
which there is a maximal coset gH entirely contained in X, and r ≥ 1.

If H has dimension r = n, then this essentially means that X• = Gn and
hence X = X•, which in turn implies that the polynomial Q0 is identically 0.
So it is only the strict polynomial inequalities Qi > 0 that need to hold
for there to be a solution. We can check whether the inequalities can be
satisfied by applying Lemma 4.4, with Λ = Zm, and polynomials Q1, . . . , Qℓ.
Recall that the requirement for the exponents to be distinct is assumed to
be encoded in the polynomial inequalities, as remarked in Section 4.2.1. So
much for deciding the case when H has dimension r = n.

We assume now that H has dimension r, where 0 < r < n. Using
Lemma 4.10, we next compute a matrix A ∈ SL(n,Z), and a subvariety
X1 ⊆ Gn−r, such that ⋃

gH⊆X

gH = φA(X1 ×Gr).

Now X1 ⊆ Gn−r does not contain any positive dimensional coset, i.e.
X1 = X◦

1 . To see this, assume towards a contradiction that there is some g1
and a torus H1 of dimension r1 > 0 such that g1H1 ⊆ X1. Then we have⋃

gH⊆X

gH ⊇ φA(g1H1 ×Gr).

Proposition 4.7 implies that there exists a monoidal transformation φ1 such
that ⋃

gH⊆X

gH ⊇ φA

(
φ1(1n−r−r1 ×Gr1)×Gr

)
.(20)

From the proof of Lemma 4.10 it plainly follows that there is a bijection be-
tween points in X1 and cosets gH that are contained in X. This fact together
with the inclusion (20) yield the existence of a coset gH of dimension r that
is contained in a coset of dimension r+r1, both of which are inside X. Since
r1 > 0, the coset gH is contained in a strictly larger coset; contradicting the
definition of TX which says that all gH should be maximal.

Now we can write the union of all cosets gH contained in X as

φA(X
◦
1 ×Gr).
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The union all subgroups of dimension one, H1, is invariant under monoidal
transformations. Therefore,

H1 ∩ φA(X
◦
1 ×Gr) = φA(H1) ∩ φA(X

◦
1 ×Gr),

and since φA is an isomorphism we have

= φA

(
H1 ∩ (X◦

1 ×Gr)
)
.

Through composition with the polynomial defining the monoidal transfor-
mation φA, we can construct polynomials Q̃0, . . . , Q̃ℓ such that if

z ∈ φA

(
H1 ∩ (X◦

1 ×Gr)
)

satisfies the polynomial (in)equalities Q0 = 0, Qi > 0 for 1 ≤ i ≤ ℓ, then

φA−1(z) ∈ H1 ∩ (X◦
1 ×Gr),

satisfies the polynomial (in)equalities Q̃0 = 0, Q̃i > 0, for 1 ≤ i ≤ ℓ.
Using the procedure of Theorem 4.12 we compute a bound b1 ∈ N for the
intersection

H1(n− r) ∩X◦
1

where H1(n− r) is the union of all algebraic subgroups of Gn−r. As above,
we search for (λx1 , . . . , λxn−r) with ∥x∥ ≤ b1 that belong to X◦

1 . If none are
found, the procedure halts and returns no. Since φA sends powers of λ to
powers of λ, the no answer is justified, as indeed there are no solutions.

If a finite number of (λx1 , . . . , λxn−r) belonging to X◦
1 are found, we try

each in turn to see if they can be made to satisfy the inequalities as well. Let
(λx1 , . . . , λxn−r) be one such point. Fixing the first n−r coordinates to these
powers of λ in the polynomial (in)equalities makes Q̃0 identically zero, and
gives us new inequalities Ri > 0, 1 ≤ i ≤ ℓ. By construction, the polynomials
Ri will satisfy the hypothesis of Lemma 4.4, so we can apply this lemma for
Λ = Zr to determine if R1, . . . , Rℓ are satisfied by some powers of λ. If such
powers of λ are found, the procedure halts and returns yes9. If there is not,
we continue with another candidate (λy1 , . . . , λyn−r) that has ∥x∥ ≤ b1, and
which belongs to X◦

1 . This concludes the proof of Theorem 1.3(ii).
We briefly comment about why we are limited to rotations on the plane.

If the given matrix is not a rotation, then the relevant points do not all
belong to H1, but rather to H2, in subgroups of dimension 2. Intuitively
this is because the matrix changes vectors over two dimensions: scaling and
rotating. What we lack is an effective bound akin to that in Theorem 4.12,
but for subgroups of dimension 2. There are finiteness results, often as special
cases of the Mordell-Lang conjecture, see e.g. [Lau84], but to our knowledge,
no effective bounds are known.

9A detail that needs to be justified is that xi need to be positive after the application
of φA−1 . But we can find such xi due to the equidistribution theorem that was used in
the proof of Lemma 4.4.
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