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Abstract
We study fundamental reachability problems on pseudo-orbits of linear dynamical systems. Pseudo-
orbits can be viewed as a model of computation with limited precision and pseudo-reachability can
be thought of as a robust version of classical reachability. Using an approach based on o-minimality
of Rexp we prove decidability of the discrete-time pseudo-reachability problem with arbitrary
semialgebraic targets for diagonalisable linear dynamical systems. We also show that our method can
be used to reduce the continuous-time pseudo-reachability problem to the (classical) time-bounded
reachability problem, which is known to be conditionally decidable.
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1 Introduction

A discrete-time linear dynamical system (LDS) is given by an update matrix M ∈ Qd×d and
a starting point s ∈ Qd. An LDS describes a system whose state contains d rational numbers
and evolves linearly. The orbit of such a system is the infinite sequence 〈s,Ms,M2s, . . .〉
of points in Qd. Orbits of LDS arise in many areas of computer science and mathematics,
including verification of linear loops [10], automata theory [3], and the theory of linear
recurrence sequences [17].

A fundamental problem about LDS is the question of deciding, given a system 〈M, s〉 and
a semialgebraic target set S ⊆ Rd, whether there exists n such that Mns ∈ S. This problem
is known as the reachability problem for LDS and has been studied extensively over the
last few decades. In their seminal work, Kannan and Lipton showed that the point-to-point

mailto:julianrdcosta@gmail.com
https://orcid.org/0000-0003-2610-5241
mailto:toghs@mpi-sws.org
https://orcid.org/0000-0002-9405-2332
mailto:rupak@mpi-sws.org
https://orcid.org/0000-0003-2136-0542
mailto:joel@mpi-sws.org
https://orcid.org/0000-0003-0031-9356
mailto:msalamati@mpi-sws.org
https://orcid.org/0000-0003-3790-3935
mailto:jbw@cs.ox.ac.uk
https://orcid.org/0000-0001-8151-2443
https://perspicuous-computing.science
https://perspicuous-computing.science
https://perspicuous-computing.science
https://perspicuous-computing.science
http://emmy.network/


2 The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems

reachability problem, i.e., the case in which S is a singleton, is decidable in polynomial time.
At the same time they observed that the case in which S is a (d− 1)-dimensional subspace of
Rd (i.e. a hyperplane) is equivalent to the famous Skolem problem whose decidability remains
open to this day. The Skolem problem asks, given a linear recurrence sequence defined by a
recurrence relation un+d = a1un + . . .+ adun+d−1 and initial values u0, . . . , ud−1, to decide
whether there exists n such that un = 0. In addition to this Skolem-hardness, the difficulty of
settling the reachability problem was further demonstrated by the results of [16], which show
that solving the reachability problem with halfspace targets, known as the positivity problem,
would entail major mathematical breakthroughs in the field of Diophantine approximation.

The reachability problem is defined with reference to the exact dynamics of an LDS. Since
computational systems typically operate with finite precision, it is natural to consider an
alternate notion of reachability involving so-called pseudo-orbits. The notion of pseudo-orbit
is an important conceptual tool in dynamical systems that was introduced by Anosov [2],
Bowen [4], and Conley [6], and was used by the latter to prove what is sometimes called the
fundamental theorem of dynamical systems. Given an LDS 〈M, s〉, a sequence 〈xn | n ∈ N〉
is an ε-pseudo-orbit of s under M if x0 = s and ‖Mxn − xn+1‖ < ε for all n ∈ N. In other
words, in a pseudo-orbit one considers an enlarged transition relation that is obtained by
considering the dynamical system up to precision ε. Given ε > 0, a set S is said to be
ε-pseudo-reachable if there exists an ε-pseudo-orbit 〈x0 = s, x1, x2, . . .〉 of s under M that
reaches S. We further say that S is pseudo-reachable if S is ε-pseudo-reachable for every
ε > 0. If a set S of error states is not pseudo-reachable then we can consider the system as
being safe if implemented with sufficient precision, while if S is pseudo-reachable, it means
that no finite amount of precision suffices to make the system reliably safe.

Recently, D’Costa et al. [7] considered the pseudo-reachability problem and, somewhat
surprisingly, showed decidability in cases where S is a point (the pseudo-orbit problem), a
hyperplane (the pseudo-Skolem problem) or a halfspace (the pseudo-positivity problem).
Their proof of the first result relies on an exact characterisation of ε-pseudo-orbits. Their
solution to the latter two problems, however, depends heavily on the fact that a hyperplane (a
halfspace) can be defined using a single equality (inequality), an approach which unfortunately
cannot be generalised to arbitrary semialgebraic targets. In this work, we develop a novel
logical approach to show the decidability of the pseudo-reachability problem for
diagonalisable systems with arbitrary semialgebraic targets.

1.1 High-level proof sketch of our approach
Our solution to the diagonalisable pseudo-reachability problem can be summarised as follows.
Let Õε(n) denote the set of all points that are reachable exactly at time n via an ε-pseudo-
orbit. The pseudo-reachability problem then consists in checking whether the sentence
Φ := ∀ε.∃n ∈ N : Õε(n) ∩ S 6= ∅ is true. In this form, Φ is not amenable to application
of logical methods as it involves both integer and real-valued variables, in addition to
exponentiation with a complex base (coming from non-real eigenvalues of M). We therefore
first move to the continuous domain and construct an abstraction Aε(t) for t ∈ R≥0 that
is definable in Rexp such that Aε(n) ⊇ Õε(n) for all n ∈ N. We then investigate the values
of ε and t that make Ψ(ε, t) := Aε(t) ∩ S 6= ∅ true. We show that by the o-minimality of
Rexp, either for every ε > 0 there exists T such that for all t > T , Ψ(ε, t) holds, or the
pseudo-reachability problem is equivalent to a finite-horizon reachability problem that is
easily solvable. In the former case, it follows that for every ε > 0, Ψ(ε, n) holds for all
sufficiently large integer values n, thus establishing a bridge back to the discrete setting. We
conclude by showing that in this case, S is pseudo-reachable. Intuitively, the idea is to use
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the universal quantification over ε to argue that if S can be reached using an ε/2-abstraction
at all but finitely many time steps, then it can be reached by an ε-pseudo-orbit, in fact at
infinitely many possible time steps. The importance of the universal quantification is also
illustrated by the following hardness result. For any fixed ε > 0, it is decidable whether
∃n ∈ N : Aε(n) ∩ S 6= ∅ holds, whereas the ε-pseudo-reachability problem of determining
whether ∃n ∈ N : Õε(n)∩S 6= ∅ holds is hard with respect to (a hard subclass of) the Skolem
problem, as shown in Section 4.

The approach outlined above can be adapted to solve a few other related problems about
linear dynamical systems. An example would be the robust reachability problem recently
considered by Akshay et al. in [1]: given an LDS 〈M, s〉 and a semialgebraic target S, decide
whether for all ε > 0 there exists a point s′ in the ε-neighbourhood of s whose orbit reaches
S. This problem can be thought of as a modification of the pseudo-reachability problem
where only one perturbation is allowed at the very beginning. Due to this simplification,
we are able to show, in the full version, full decidability (that is, without the restriction to
diagonalisable systems) of the robust reachability problem. Finally, because the first step of
our solution is to translate the problem into the continuous domain, the continuous versions
of both the pseudo-reachability problem (discussed in Section 5) and the robust reachability
problem (discussed in the full version) can be handled using the same approach, arguably
more naturally. For the former, because we proceed by reducing the pseudo-reachability
problem to bounded-time reachability problem, the decidability result assumes Schanuel’s
conjecture.

2 Mathematical tools

We write B(c, r) for an `2-ball of radius r centred around c ∈ Rd and 0 ∈ Rd for the d-
dimensional zero vector. We denote by T ⊆ C the unit circle in the complex plane. We denote
by ||x|| the `2-norm of a vector x.

2.1 First-order logic

We denote by R0 the (structure of) real numbers with addition and multiplication, by Rexp
the real numbers with addition, multiplication and (unbounded) exponentiation and by
Rexp,cos �[0,T ] the real numbers with exponentiation and bounded (in input, by some T > 0)
trigonometric functions. By the Tarski-Seidenberg theorem, the theory of R0 admits effective
quantifier elimination and is therefore decidable. The theories of Rexp and Rexp,cos �[0,T ] are
known to be decidable subject to Schanuel’s conjecture (see, e.g., [11]) in transcendental
number theory [13, 19]. However Rexp,cos �[0,T ] (and hence Rexp and R0) are unconditionally
known to be o-minimal [18]. That is, any subset of R definable using addition, multiplication,
real exponentiation and bounded trigonometric functions is a finite union of intervals.
In particular, o-minimality implies that any definable subset of R is either bounded or
contains all sufficiently large real numbers.

A semialgebraic set is a subset of Rd definable in R0. We say that a function ϕ : Rl → Rm
is semialgebraic if its graph is a semialgebraic subset of Rl+m. Intuitively, semialgebraic
functions are exactly the functions that can be specified using arithmetic operations over
real numbers.
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2.2 Kronecker’s theorem and its applications
The analysis of problems about linear dynamical systems often reduces to that of the orbit
〈Γn | n ∈ N〉 where Γn = (γn1 , . . . , γnk ) for γ1, . . . , γk ∈ T. Let T = cl({Γn : n ∈ N}) be the
topological closure of the discrete orbit. The set T is semialgebraic and well-understood with
the help of Kronecker’s theorem in simultanous Diophantine approximation [9].

I Theorem 1 (Kronecker). Let θ1, . . . , θk, ϕ1, . . . , ϕk be such that for any integers a1, . . . , ak,

k∑
i=1

aiθi ∈ Z⇒
k∑
i=1

aiϕi ∈ Z.

For any ε > 0 there exist infinitely many n ∈ Z such that {nθi − ϕi} < ε for all 1 ≤ i ≤ k,
where {x} denotes the distance from x ∈ R to the nearest integer.

To apply this theorem to our situation, let

T = {(z1, . . . , zk) : ∀a1, . . . , ak ∈ Z : γa1
1 · · · γ

ak

k = 1⇒ za1
1 · · · z

ak

k = 1}.

For z = (z1, . . . , zk) ∈ T , by considering θi = arg(γi)
2π and ϕi = arg(zi)

2π for 1 ≤ i ≤ k we
can deduce that for each ε > 0 there exists n such that ||z − Γn|| < ε and hence the orbit
〈Γn | n ∈ N〉 is dense in T . On the other hand, using Masser’s deep results [14] about
multiplicative relations between algebraic numbers one can compute, in polynomial time, a
finite basis for {(a1, . . . , ak) ∈ Zk : γa1

1 · · · γ
ak

k = 1}. Hence T is closed, semialgebraic and
effectively computable. It then follows that T = cl({Γn : n ∈ N}).

We will also need the following lemma that is equivalent to effective computability of
T = cl({Γn : n ∈ N}) as a semialgebraic set.

I Lemma 2. Let R = diag(Λ1, . . . ,Λk) ∈ R2k×2k be a block diagonal matrix where Λi is an
algebraic rotation matrix for 1 ≤ i ≤ k. The closure of the set {Rnx : n ∈ N}, where x ∈ RD
has algebraic entries, is semialgebraic and effectively comutable.

The proof follows immediately from diagonalising Rn and observing that all eigenvalues of R
are algebraic numbers in T.

3 Decidability for discrete-time diagonalisable systems

In this section we prove our main result: the decidability of the pseudo-reachability problem
for discrete-time diagonalisable affine dynamical systems, which are a generalisation of LDS.
The reason we consider affine systems is that the well-known homogenisation trick (increasing
the dimension by one and adding a coordinate that is always equal to 1) used for reducing the
classical reachability problem for affine systems to the reachability problem for LDS doesn’t
work for the pseudo-reachability problem: when control inputs are allowed, one cannot force
a coordinate to remain constant. Hence affine systems require separate treatment.

I Problem 3 (pseudo-reachability). Let M ∈ QL×L be an update matrix, s ∈ QL be a starting
point, b ∈ QL be an affine term and S ⊆ RL be a semialgebraic target set. A sequence
〈x0 = s, x1, x2 . . .〉 is an ε-pseudo-orbit of s if ||Mxn + b− xn+1|| ≤ ε for all n. The pseudo-
reachability problem asks: given M, b, s and S, decide whether for each ε > 0 there exists an
ε-pseudo-orbit of s under the dynamics xn+1 = Mxn + b that reaches the set S.
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Let Õε(n) denote the set of all points that are reachable via an ε-pseudo-orbit of s under the
map x 7→ Mx + b at time n. Since Õε(0) = {s} and Õε(n + 1) = MÕε(n) + b + εB(0, 1),
by induction we can show that Õε(n) = Mns+

∑n−1
i=0 M

ib+ ε
∑n−1
i=0 M

iB(0, 1). The pseudo-
reachability problem is then equivalent to determining the truth of ∀ε.∃n : Õε(n) ∩ S 6= ∅.
Here B(0, 1) can be viewed as the “control set”, and the pseudo-reachability problem can
be viewed as the problem of determining whether S can be reached using arbitrarily small
control inputs. The next lemma shows that we can in fact, choose any reasonable control set.

I Lemma 4 (Invariance under change of the control set). Let B ⊆ RL be a compact set
containing an open ball around the origin.
1. The pseudo-reachability problem as defined above is equivalent to the problem of deter-

mining whether

∀ε.∃n : (Mns+
n−1∑
i=0

M ib+ ε

n−1∑
i=0

M iB) ∩ S 6= ∅.

2. We may assume the matrix M is in real Jordan form.

Proof. Since B is assumed to be compact and to contain an open neighbourhood around the
origin, there must exist constants C1, C2 such that C1B(0, 1) ⊆ B ⊆ C2B(0, 1). Hence

C1ε

n−1∑
i=0

M iB(0, 1) ⊆ ε
n−1∑
i=0

M iB ⊆ C2ε

n−1∑
i=0

M iB(0, 1).

The proof of (1) then follows from the fact that ε is universally quantified: one can simulate
(i) an ε-pseudo-orbit with control set B using a C2ε-pseudo-orbit with control set B(0, 1) and
(ii) an ε-pseudo-orbit with control set B(0, 1) using a ε/C1-pseudo-orbit with control set B.
Proof of (2) follows from observing that multiplying a control set B by an invertible change
of basis matrix results in a control set satisfying the conditions of Lemma 4. J

Observe that the change of the control set described above is not applicable when ε is fixed,
as in the ε-pseudo-reachability problem discussed in Section 4.

3.1 A closed form for Õε(n)
We now use Lemma 4 to choose a control set that results in Õε(n) with a convenient first-order
closed form: observe that the naïve formulation above involves the term

∑n−1
i=0 M

iB(0, 1)
which is not “first-order”.

Assume M is diagonalisable and in real Jordan form: M = diag(Λ1, . . . ,Λk, ρk+1, . . . , ρd).
That is, M consists of d block, the first k of which have dimension 2 × 2 and a pair of
non-real conjugate eigenvalues, whereas the remaining blocks are 1× 1 and real. Write ρj
for the spectral radius of the jth block. We can factor M into a “scaling” and a “rotation”
as M = DR where D = diag(ρ1, ρ1, . . . , ρk, ρk, ρk+1, ρk+2, . . . , ρd) is diagonal and R is a
block-diagonal matrix that consists of blocks that are either 2 × 2 rotation matrices or
1 × 1 and equal to

[
±1
]
. For all the following sections we will be using the convenient

“rotation-invariant” control set

B = Πk
j=1B((0, 0), 1)×Πd

j=k+1[−1, 1],

where B((0, 0), 1) is the standard unit disc. Observe that B is a product of `2-balls that
matches the block structure of M . It follows that RB = B and hence

Õε(n) = DnRns+
n−1∑
i=0

M ib+ ε

n−1∑
i=0

DiRiB = DnRns+
n−1∑
i=0

M ib+ εB(n)
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where B(n) =
∑n−1
i=0 D

iB. We then have

B(n) =
n−1∑
i=0

Di
(
Πk
j=1B((0, 0), 1)×Πd

j=k+1[−1, 1]
)

=
n−1∑
i=0

Πk
j=1B((0, 0), ρmj )×Πd

j=k+1[−ρij , ρij ]

= Πk
j=0B

(
(0, 0),

n−1∑
i=0

ρij

)
×Πd

j=k+1B

(
0,
n−1∑
i=0

ρij

)
.

Geometrically, the idea is that a 2× 2 or a 1× 1 block maps a disc (which corresponds to
an interval in 1D) to a disc, and a set-sum of discs remains a disc. Our ability to reason in
this way crucially depends on the fact that M is diagonalisable. Finally, since

∑n−1
i=0 ρ

i
j is

either ρn
j −1
ρj−1 or nρj , we can write B(n) = {z : ϕ(z, n, ρn1 , . . . , ρnd )}, where ϕ is a semialgebraic

predicate.
We can apply the blockwise summation technique, distinguishing between the cases where

the spectral radius of the block is 1 or different from 1, to the term
∑n−1
i=0 M

ib to obtain the
closed form

∑n−1
i=0 M

ib = DnRnx′ + cn+ d, where x′, c and d only depend on M and b. We
fold s and x′ into a new, fictive starting point x to obtain the final closed form

Õε(n) = DnRnx+ cn+ d+ εB(n).

In order to solve the pseudo-reachability problem, we henceforth consider the problem of
determining the truth of the sentence ∀ε > 0.∃n : (DnRnx+ cn+ d+ εB(n)) ∩ S 6= 0.

3.2 Passing to the abstraction
The expression for Õε(n) contains the term DnRnx, which is the last obstacle to obtaining
an expression which we can attack using known results about theories of real numbers. To
address this issue we resort to abstracting Õε(n). Let

T := cl ({Rnx : n ∈ N}) and Aε(n) := DnT + cn+ d+ εB(n)

where T is the closure of the orbit of x under R, and is semialgebraic and effectively
computable by the discussion in Subsection 2.2. Moreover, recall that by Kronecker’s
theorem for every z ∈ T and ε > 0 there exist infinitely many integers 0 < n1 < n2 < . . .

such that ||Rnix− z|| < ε for all i.
Here Aε(n) acts as an abstraction of Õε(n). In particular, for all ε > 0 and n ∈ N we

have Aε(n) ⊇ Õε(n). Observe that Aε(n) = {z : ϕ(z, ε, n, ρn1 , . . . , ρnd )} for a semialgebraic
predicate ϕ. Viewing Aε(n) as a proxy for Õε(n), we arrive at the following dichotomy.

I Lemma 5. Either
1. for every ε > 0 there exists Nε such that for all n > Nε, Aε(n) intersects S, or
2. there exist N and ε > 0, both effectively computable, such that Aε(n) does not intersect S

for all n > N .
Moreover, it can be effectively determined which case holds.

Proof. First we show that the dichotomy holds, putting the issues of effectiveness aside. Let

Φ(ε, n) =
∨
α∈A

∧
β∈B

pα,β(ε, n, ρn1 , . . . , ρnd ) ./α,β 0
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be a quantifier-free formula equivalent to Aε(n)∩S 6= ∅. Such Φ(ε, n) must exist because Aε(n)
is semialgebraic with parameters {ε, n, ρn1 , . . . , ρnd} and by the Tarski-Seidenberg theorem,
each such set can be described using a quantifier-free formula of the form given above.
Suppose Case 1 does not hold. Then there exists a particular ε > 0 such that Φ(ε, n) does
not hold for arbitrarily large n. Treating n as a continuous parameter, consider the set
{n ∈ R≥0 : Φ(ε, n) does not hold}. By o-minimality of Rexp this set is a finite union of
intervals and since it contains arbitrarily large integers by assumption, it must contain an
unbounded interval (N,∞) of real numbers with N ∈ N. That is, for all n > N the formula
Φ(ε, n) does not hold.

Effectiveness. We now address the issues of effectiveness. Consider the formula

Ψ(ε) = ∃Nε.∀n > Nε : Φ(ε, n).

We show that Ψ(ε) is equivalent to a formula ψ(ε) in the language of R0. To determine which
case holds it then remains to determine the truth value of the sentence ∀ε : ψ(ε).

By the o-minimality argument above, given ε > 0, each pα,β(ε, n, ρn1 , . . . , ρnd ) ./α,β 0 either
holds for finitely many integer values of n or holds for all sufficiently large integer values n.
By elementary considerations it follows that Ψ(ε) is equivalent to∨

α∈A

∧
β∈B

∃Nε.∀n > Nε : pα,β(ε, n, ρn1 , . . . , ρnd ) ./α,β 0.

Hence it suffices to show how to construct a formula in the language of R0 that is equivalent
to ∃Nε.∀n > Nε : pα,β(ε, n, ρn1 , . . . , ρnd ) ./α,β 0. If pα,β is identically zero, this is trivial.
Otherwise, write pα,β(ε, n, ρn1 , . . . , ρnd ) =

∑k
i=1 qi(ε)hi(n)Rni where qi and hi are non-zero

polynomials and R1 > · · · > Rk > 0 are real algebraic numbers of the form ρp1
1 · · · ρ

pd

d for
p1, . . . , pd ∈ N. Wlog assume that ./α,β∈{>,≥} and for all 1 ≤ i ≤ k, hi(n) is positive for
sufficiently large n. If qi(ε) = 0 for all 1 ≤ i ≤ k, then pα,β(ε, n, ρn1 , . . . , ρnd ) ./α,β 0 holds
if and only ./α,β is ≥. Otherwise, by discarding sufficiently many summands assume that
q1(ε) 6= 0. Since |q1(ε)h1(n)Rn1 | >

∣∣∣∑k
i=2 qi(ε)hi(n)Rni

∣∣∣ for sufficiently large n, we have that
pα,β(ε, n, ρn1 , . . . , ρnd ) ./α,β 0 holds for sufficiently large n if and only if q1(ε) > 0. Therefore,
we can construct the desired R0 formula ψ(ε) from sign constraints on qi(ε) for 1 ≤ i ≤ k.

Computing N . Finally, we show that in Case 2, the value N can be effectively computed.
To this end, by repeatedly trying smaller and smaller values of ε first compute e > 0
such that Ψ(e) does not hold. To be able to compute N it then suffices to compute Nα,β
such that for all n > Nα,β , pα,β(e, n, ρn1 , . . . , ρnd ) ./α,β 0 does not hold, assuming that
pα,β(e, n, ρn1 , . . . , ρnd ) ./α,β 0 is not satisfied for sufficiently large n. We can take N to be
maximum of Nα,β over (α, β) ∈ A×B.

To compute Nα,β , assuming pα,β(e, n, ρn1 , . . . , ρnd ) is not zero for all n, again write
pα,β(e, n, ρn1 , . . . , ρnd ) =

∑k
i=1 qi(ε)hi(n)Rni where q1(ε) 6= 0, h1(n) is positive for sufficiently

large n and R1 > · · · > Rk > 0 are real algebraic, and wlog assume that ./α,β∈ {>,≥}. Since
pα,β(e, n, ρn1 , . . . , ρnd ) ./α,β 0 fails for sufficiently large n, it must be the case that q1(e) < 0.
Let N1 be such that h1(n)q1(e) < −1 for n > N1 and let H(n) be a polynomial such that
H(n)Rn2 >

∣∣∣∑k
i=2 qi(e)hi(n)Rni

∣∣∣ for all n. Choose Nα,β > N1 to be such that

(
R1

R2

)n
> H(n)
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for n > Nα,β . Then for n > Nα,β ,

Rn1 > H(n)Rn2 =⇒ |q1(e)h1(n)Rn1 | >

∣∣∣∣∣
k∑
i=2

qi(e)hi(n)Rni

∣∣∣∣∣ =⇒ pα,β(e, n, ρn1 , . . . , ρnd ) < 0

and hence pα,β(e, n, ρn1 , . . . , ρnd ) ./α,β 0 does not hold. J

3.3 From the abstraction back to ε-pseudo-orbits
In this section we consider the relationship between the two cases of Lemma 5 and our
original pseudo-reachability problem. Case 2 is simpler: S is pseudo-reachable if and only if

∀ε.∃n ≤ N : (Mnx+ cn+ d+ εB(n)) ∩ S 6= ∅.

Let S denote the topological closure of S. We show that the statement above is equivalent
to ∃n ≤ N : Mnx + cn + d ∈ S. Observe that if for all n ≤ N the point Mnx + cn + d is
not in S, then by compactness the smallest distance from {Mnx+ cn+ d | n ≤ N} to S is
positive and hence for sufficiently small ε the target S cannot be ε-pseudo-reached within the
first N steps. Conversely, if Mnx+ cn+ d ∈ S for some n ≤ N , then because B(n) is full
dimensional and contains 0 in its interior, it follows that (Mnx+ cn+ d+ εB(n)) ∩ S 6= ∅
for all ε > 0. Therefore, in Case 2 pseudo-reachability can be decided by simply checking if
{Mnx+ cn+ d | n ≤ N} reaches S.

Next we will show that in the first case S is always pseudo-reachable. Given z ∈ T , we
define a “localisation” of the abstraction at the point z as Aε(n)(z) := Dnz + cn+ d+ εB(n).
Observe that Aε(n) = {Aε(n)(z) : z ∈ T }. This definition of a localisation will allow us to
select a “concrete trajectory” from the set of all possible (abstract) trajectories.

Fix ε > 0 and let Tn := {z ∈ T : Aε(n)(z) intersects S}. The next lemma implies that
the sequence Tn must tend towards a limiting shape; i.e. it cannot “jump around” forever.

I Lemma 6. Let Tn = {z : ϕ(z, n, ρn1 , . . . , ρnd )}, where ϕ is a semialgebraic function and
ρ1, . . . , ρd are real algebraic, be a family of non-empty sets contained in a compact set T .
There exists a non-empty limiting set L ⊆ T to which the sequence Tn converges as n→∞,
in the following sense.
a For every ε > 0, there exists N such that for all n > N , Tn ⊆ L+B(0, ε).
b For all z ∈ L and ε > 0 there exists N such that for all n > N , z +B(0, ε) intersects Tn.

Proof. Write ϕ(z, n, ρn1 , . . . , ρnd ) =
∨
α∈A

∧
β∈B pα,β(z, n, ρn1 , . . . , ρnd ) ./α,β 0. We can define

the sequence 〈Tt | t ∈ R〉 as Tt = {z : ϕ(z, t, ρt1, . . . , ρtd)}. Let L = {x : lim inf d(x, Tt) = 0}
where d(x, Tt) denotes the shortest Euclidean distance from x to a point in Tt.

We prove the first claim by contradiction. Suppose there exists ε > 0 such that at
infinitely many unbounded time steps t1 < t2 < . . . there are points z1, z2, . . . such that
zi ∈ Ti but zi /∈ L+ B(0, ε). Then the sequence zi must have an accumulation point z in
T \ L. But z will also satisfy lim inf d(z, Tt) = 0 and hence z ∈ L, a contradiction.

We prove the second claim using o-minimality of Rexp. Fix z ∈ L and ε > 0 and consider
the set Z = {t ∈ R : z +B(0, ε) intersects Tt}. The set Z is o-minimal, and since z ∈ L, it is
unbounded from above. Hence it must contain an interval of the form (N,∞), which implies
the desired result. J

One can also show that the set L described above is in fact semialgebraic, but this is not
necessary for our arguments. We are now ready to show that S is pseudo-reachable if Case 1
of Lemma 5 holds.
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I Lemma 7. If for every ε > 0 there exists Nε such that for all n > Nε, Aε(n) intersects S
then S is pseudo-reachable.

The main idea of the proof is to use the assumption that Aε/2(n) intersects S for sufficiently
large n to construct an ε-pseudo-orbit that hits S. Intuitively, in order to simulate Aε/2(n)
using an ε-pseudo-orbit, ε/2 of the total control allowance is used to replicate the effect of
the control inputs (of size at most ε/2, corresponding to the ε

2B(n) term in the definition of
Aε/2(n)) and the remaining ε/2 is used to compensate for the abstraction from the starting
point a to the set T . In fact, we do not know if one can deduce that S is ε-pseudo-reachable
from knowing that Aε(n) intersects S for sufficiently large n. This illustrates the reason
why the pseudo-reachability problem is easier than the ε-pseudo-reachability problem; see
Section 4 for a more concrete argument.

Proof. Fix ε > 0. We show how to construct an ε-pseudo-orbit that hits S. Consider Aε/2(n).
By assumption, there exists N1 such that for all n > N1, Aε/2(n) intersects S. We now
investigate which localisations of the abstraction are responsible for intersecting S. Apply
Lemma 6 to the sets Tn = {z ∈ T : Aε/2(n)(z) intersects S} to obtain their ‘limit’ L. Fix
any p ∈ L.

Let ε′ be small enough so that ε′DnB ⊆ ε
2B(n) for all n > 0. Intuitively, such ε′ must exist

because DnB and Dn−1B only differ by at most a constant factor that only depends on the
magnitudes ρ1, . . . , ρd of eigenvalues of M , and we have that B(n) =

∑n−1
i=0 D

iB ⊇ Dn−1B.
By Lemma 6 (b), there exists N > N1 such that for all n > N , p + B(0, ε′/2) intersects
Tn. That is, for all n > N there exists pn ∈ T such that ||p − pn|| < ε′/2 and pn ∈ Tn.
Equivalently,

||p− pn|| < ε′/2 and Aε/2(n)(pn) intersects S.

By Kronecker’s theorem there must exist m > N such that ||Rmx− p|| < ε′/2. Hence we
have ||Rmx− pm|| < ε′ which implies Rmx− pm ∈ ε′B and hence Dm(Rmx− pm) ∈ ε′DmB.
Since by construction of ε′ we have ε′DmB ⊆ ε

2B(m), it follows that Dm(Rmx−pm) ∈ ε
2B(m)

and hence Dmpm ∈ DmRmx+ ε
2B(m). Therefore,

Õε(m) =
(
DmRmx+ ε

2B(m)
)

+cm+d+ ε

2B(m) ⊇ Dmpm+cm+d+ ε

2B(m) = Aε/2(m)(pm).

Since Aε/2(m)(pm) intersects S, it then follows that Õε(m) too must intersect S. J

3.4 The algorithm
To summarise, the analysis above gives us the following algorithm for determining if S is
pseudo-reachable, i.e. if ∀ε > 0.∃n : Õε(n) ∩ S 6= ∅. Let ϕ(n, ε) be a quantifier-free formula
in Rexp defining the abstraction Aε(n). First determine, using the algorithm described in
the proof of Lemma 5, whether Case 1 or Case 2 holds. If the former holds, then conclude
that S is pseudo-reachable. If Case 2 holds, then compute the value of N effectively and
check if there exists n < N such that (Mnx+ cn+ d) ∩ S 6= ∅.

4 Skolem-hardness of the ε-pseudo-reachability problem

In this section we consider the ε-pseudo-reachability problem for discrete diagonalisable
systems: given diagonalisable M , starting point s, a target set S and ε > 0, decide whether
there exists n such that Mns+

∑n−1
k=0 M

kB(0, ε)∩ S 6= 0. This problem is also known as the
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reachability problem for linear time-invariant systems [8] with the control set B(0, ε). We
will reduce a hard subclass of the Skolem problem to our ε-pseudo-reachability problem.

The Skolem problem is not known to be decidable for orders d ≥ 5, even for diagonal-
isable recurrences. The largest class of sequences for which decidability is known is the
MSTV (Mignotte-Shorey-Tijdeman-Vereschagin) class, which consists of all linear recurrence
sequences over integers that (i) have at most three dominant roots with respect to the usual
(Archimedean) absolute or (ii) have at most two dominant roots with respect to a p-adic
absolute value [12]. We consider the Skolem problem for integer sequences whose roots
ρ, λ1, . . . , λd satisfy ρ = |λ1| = · · · = |λd|. This class of sequences contains many instances
that are not in the MSTV class and hence is a hard subclass of the Skolem problem.

Recall that any linear recurrence sequence can be written as un = c>Mns where M is the
companion matrix of un whose eigenvalues are the roots of un. Let un be a diagonalisable
sequence that belongs to the hard subclass described above, i.e. un = c>Mns where
M = diag(Λ1, . . . ,Λd, ρ) and Λi is a 2 × 2 real Jordan block with ρ(Λi) = ρ for 1 ≤ i ≤ d.
We reduce the problem “does un have a zero?” to an ε-pseudo-reachability problem.

Consider the sequence vn = u2
n. Observe that vn =

∑L
i=1 ciΓni si + Crn where

r = ρ2,
Γi is a 2× 2 real Jordan block with ρ(Γi) = r for 1 ≤ i ≤ L,
ci, si ∈ R2 for 1 ≤ i ≤ L, and
C > 0.

The first two statements follow from the fact that the eigenvalues of vn are products of
eigenvalues of un. That C > 0 can be deduced as follows. Consider wn =

∑L
i=1 ciΓni si. It

only has non-real roots and hence by [15] is infinitely often positive and negative. Hence if C
is not positive, then vn < 0 for infinitely many n, which contradicts the fact that vn ≥ 0.

Next observe that un has a zero iff there exists n such that vn ≤ 0. Since we are interested
only in the sign of vn, by scaling vn by C(2r)n if necessary we assume that r ∈ (0, 1) and
C = 1. We will construct an instance of the ε-pseudo-reachability problem that is positive if
and only if there exists n such that vn ≤ 0.

Define
A = diag(Γ1, . . . ,ΓL),
s = (s1, . . . , sL) and c = (c1, . . . , cL),
ε = 1−r

||c|| , and
H = {z : c> · z + 1 ≤ 0}.

Observe that H is ε-pseudo-reachable if and only if Ans+
∑n−1
i=0 A

iB(0, ε)∩H 6= 0 for some n.
Since AiB(0, ε) = B(0, riε), we have

∑n−1
i=0 A

iB(0, ε) = B(0, 1−rn

1−r ε) := B(n) and

H is ε-pseudo-reachable ⇐⇒ min
z∈B(n)

c · (Ans+ z) + 1 is ≤ 0 for some n.

We will show that in fact minz∈B(n) c · (Ans+ z) + 1 = vn, which will conclude the proof.

min
z∈B(n)

c · (Ans+ z) + 1 =
L∑
i=1

ciΓni si + 1 + min
z∈B(n)

c · z

=
L∑
i=1

ciΓni si + 1− ||c||1− r
n

1− r ε

=
L∑
i=1

ciΓni si + rn

= vn.
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5 The continuous-time pseudo-reachability problem

In this section we show that the approach we described in Section 3 for deciding the discrete-
time pseudo-reachability problem for diagonalisable systems also works in the continuous
setting with one important difference: to handle Case 2 of the dichotomy lemma (exactly the
same as Lemma 5) we need to solve the bounded-time reachability problem for continuous-
time affine dynamical systems, which is only known to be decidable assuming Schanuel’s
conjecture [5]. For detailed proofs see the full version of the paper.

Let M = diag(Λ1, . . . ,Λk, ρk+1, . . . , ρd) ∈ (R ∩Q)L×L be a diagonalisable matrix in real
Jordan form, s ∈ QL be a starting point, b ∈ QL be an affine term and S ⊆ RL be a
semialgebraic target set. The trajectory of the system (in the absence of additional control
inputs) is given by

x(t) = eMts+
∫ t

0
eMhb dh.

Intuitively, while in the discrete setting control inputs are applied after each unit of time
and thus are represented by a sequence 〈dn | n ∈ N〉, in the continuous setting they are
represented by a continuous function ∆ : R≥0 → RL. Hence an ε-pseudo-orbit is defined as a
trajectory

x(t) = eMts+
∫ t

0
eMhb dh+

∫ t

0
eMh∆(t− h) dh.

for some control signal ∆ : R≥0 → RL satisfying ||∆ε(t)|| ≤ ε for all t ≥ 0. The pseudo-
reachability problem is then defined in the same way as before: decide whether for every
ε > 0 there exists an ε-pseudo-orbit that reaches S.

Let B be the same control set as defined in Subsection 3.1. For 1 ≤ j ≤ k, let rj = Re(λj)
and ωj = Im(λj) where λj is a non-real eigenvalue of the block Λj . For k < j ≤ d let rj = ρj
and ωj = 0. By using essentially the same arguments as in Subsection 3.1, we can show that
the pseudo-reachability problem is equivalent to determining the truth of

∀ε > 0.∃t : (eMtx+ ct+ d+ εB(t)) ∩ S 6= ∅

where x, c, d are L-dimensional vectors and B(t) = {z : ϕ(z, t, er1t, . . . , erdt)} for semialgebraic
predicate ϕ. We denote the term eMtx+ ct+ d+ B(t) by Õε(n).

To define a convenient abstraction, we again write eMt = D(t)R(t) where D(t) :=
diag(er1t, er1t, . . . , erkt, erkt, erk+1t, erk+2t, . . . , erk+dt) is diagonal and R(t) is a block diagonal

matrix whose blocks are rotation matrices of the form
[
cos(ωjt) − sin(ωit)
sin(ωjt) cos(ωjt)

]
for 1 ≤ j ≤ k

and are of the form Ωi =
[
1
]
for k + 1 ≤ j ≤ d. Just as in the discrete case, we next define

T := cl({R(t)x : t ∈ R≥0}) and Aε(t) := D(t)T + ct+ d+ εB(t),

where T is again semialgebraic and effectively computable [5] and Aε acts as an abstraction
of Õε(t). In particular, for all ε > 0 and t ∈ R≥0, we have Õε(t) ⊆ Aε(t). Moreover, observe
that Aε(t) = ϕ(t, er1t, . . . , erdt) for a semialgebraic function ϕ, which is the most important
property we need. In the full verision, using the same approach based on o-minimality we
show the following.
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I Theorem 8. The continuous-time pseudo-reachability problem reduces to the bounded-time
reachability problem for continuous-time affine dynamical systems.

Intuitively, the dichotomy lemma (Lemma 5) holds verbatim for the continuous systems,
and in Case 1 again S is always pseudo-reachable. It then remains to handle Case 2. Since
bounded-time reachability problem for continuous-time affine dynamical systems can be
encoded in Rexp,cos �[0,T ], we have the following (conditional) decidability result.

I Corollary 9. Continuous-time pseudo-reachability problem for diagonalisable affine dynam-
ical systems is decidable subject to Schanuel’s conjecture.

6 Discussion

The main technical result of our paper is that it is decidable whether

∀ε > 0.∃n : (Mnx+ f(n) + εB(n)) ∩ S 6= 0

where M is a diagonalisable matrix with algebraic entries, x is an algebraic starting point,
f is a semialgebraic function, S is a semialgebraic target and B(n) = ϕ(n, ρn1 , . . . , ρnd ) for
ρ1, . . . , ρd ∈ R ∩Q and a semialgebraic function ϕ. We used this result to show decidability
of the discrete-time pseudo-reachability problem for diagonalisable systems in the following
way. We first observed that the pseudo-reachability problem can be cast as the problem of
determining whether ∀ε > 0.∃n : Õε(n) ∩ S 6= ∅, where Õε(n) is the set of all points that
are reachable exactly at the time n via an ε-pseudo-orbit. After choosing B as the most
convenient control set (see Lemma 4 and Subsection 3.1), we then showed that Õε(n) can be
written as Mnx+ f(n) + εB(n).

The reason we are unable to show decidability for non-diagonalisable systems in this
fashion is that we are unable to write Õε(n) as Mnx+ f(n) + εB(n). For example, already

for the Jordan block M =
[
1 1
0 1

]
, and in general already for blocks with a single repeated

real eigenvalue, we do not know whether it is even possible to eliminate the summation∑n−1
i=0 M

iB and express Õε(n) = Mnx+ ε
∑n−1
i=0 M

iB, where B is any full dimensional shape
containing 0 in its interior, in the required fashion.

Our approach, however, can be used to solve, in full generality, the robust reachability
problem of [1]: given M,x and S, decide whether ∀ε > 0 : ∃n : (Mnx+ εMnB(0, 1))∩S 6= ∅.
Intuitively, the reason is that in this version there is no summation of the form

∑n−1
i=0 M

iB.
Detailed proofs (for both the discrete-time and the continuous-time versions) can be found
in the full version. For diagonalisable systems in particular, decidability of the robust
reachability problem is almost immediate. First, one can again show that the problem is
equivalent to determining whether ∀ε > 0 : ∃n : (Mnx+ εMnB)∩ S 6= ∅. It then remains to
observe that MnB = ϕ(n, ρn1 , . . . , ρnd ) for a semialgebraic predicate ϕ and apply the technical
result described above.
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