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1 Introduction

Dynamical systems are a fundamental modelling paradigm in many branches of
science, and have been the subject of extensive research for many decades. A (ra-
tional) discrete linear dynamical system (LDS) in ambient space Rd is given by
a square d×d matrixM with rational entries, together with a starting point x ∈
Qd.3 The orbit of (M,x) is the infinite trajectory O(M,x) := ⟨x,Mx,M2x, . . . ⟩.
An example of a four-dimensional LDS is given in Figure 1. Our main focus in
the present paper is on delineating the class of assertions on the orbits of LDS
that can be algorithmically decided.

M
def
=


3 2 0 −5
0 1 0 3
0 4 3 13
3 11 6 24

 x
def
=


1
−1
2
0


Fig. 1. A four-dimensional discrete linear dynamical system.

⋆ Also affiliated with Keble College, Oxford as emmy.network Fellow, and supported
by DFG grant 389792660 as part of TRR 248 (see https://perspicuous-computing.
science).

3 All of the results we present in this paper carry over to the more general setting of
real-algebraic LDS, whose entries are allowed to be real algebraic numbers. Never-
theless, we stick here to rationals for simplicity of exposition.

http://emmy.network/
https://perspicuous-computing.science
https://perspicuous-computing.science
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One of the most natural and fundamental computational questions concern-
ing linear dynamical systems is the Point-to-Point Reachability Problem, also
known as the Kannan-Lipton Orbit Problem: given a d-dimensional LDS (M,x)
together with a point target y ∈ Qd, does the orbit of the LDS ever hit the
target? The decidability of this question was settled affirmatively in the 1980s
in the seminal work of Kannan and Lipton [35,36]. In fact, Kannan and Lipton
showed that this problem is solvable in polynomial time, answering an earlier
open problem of Harrison from the 1960s on reachability for linear sequential
machines [33].

Interestingly, one of Kannan and Lipton’s motivations was to propose a line of
attack to the well-known Skolem Problem, which had itself been famously open
since the 1930s. The Skolem Problem remains unsolved to this day, although
substantial advances have recently been made—more on this shortly. Phrased
in the language of linear dynamical systems, the Skolem Problem asks whether
it is decidable, given (M,x) as above, together with a (d− 1)-dimensional sub-
space H of Rd, to determine if the orbit of (M,x) ever hits H. Kannan and
Lipton suggested that, in ambient space Rd of arbitrary dimension, the prob-
lem of hitting a low-dimensional subspace might be decidable. Indeed, this was
eventually substantiated by Chonev et al. for linear subspaces of dimension at
most 3 [21,23].

Subsequent research focussed on the decidability of hitting targets of in-
creasing complexity, such as half-spaces [32,39,47,46,48], polytopes [52,22,5],
and semialgebraic sets [6,7]. It is also worth noting that discrete linear dynam-
ical systems can equivalently be viewed as linear (or affine) simple, branching-
free while loops, where reachability corresponds to loop termination. There is
a voluminous literature on the topic, albeit largely focussing on heuristics and
semi-algorithms (via spectral methods or the synthesis of ranking functions,
in particular), rather than exact decidability results. Relevant papers include
[54,19,11,12,18,20,24,50,51,34,13,10]. Several of these approaches have moreover
been implemented in software verification tools, such as Microsoft’s Termina-
tor [26,27].

In recent years, motivated in part by verification questions for stochastic
systems and linear loops, researchers have begun investigating more sophisti-
cated decision problems than mere reachability: for example, the paper [1] stud-
ies approximate LTL model checking of Markov chains (which themselves can
be viewed as particular kinds of linear dynamical systems), whereas [38] fo-
cusses on LTL model checking of low-dimensional linear dynamical systems with
semialgebraic predicates.4 In [4], the authors solve the semialgebraic model-
checking problem for diagonalisable linear dynamical systems in arbitrary di-
mension against prefix-independent MSO5 properties, whereas [37] investigates

4 Semialgebraic predicates are Boolean combinations of polynomial equalities and in-
equalities.

5 Monadic Second-Order Logic (MSO) is a highly expressive specification formalism
that subsumes the vast majority of temporal logics employed in the field of auto-
mated verification, such as Linear Temporal Logic (LTL). “Prefix independence” is
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semialgebraic MSO model checking of linear dynamical systems in which the
dimensions of predicates are constrained. To illustrate this last approach, recall
the dynamical system (M,x) from Figure 1, and consider the following three
semialgebraic predicates:

P1(x1, x2, x3, x4)
def
= x1 + x2 + x3 − x4 = 0 ∧ (x31 = x22 ∨ x4 ≥ 3x21 + x2)

P2(x1, x2, x3, x4)
def
= x1 + x2 + 2x3 − 2x4 = 0 ∧ x31 + x23 + x3 > x4

P3(x1, x2, x3, x4)
def
= x41 − x22 = 3 ∧ 2x23 = x4 ∧ x21 − 2x32 = 4x3 .

Recall that the ambient space is R4. We identify the above predicates with
the corresponding subsets of R4, and wish to express assertions about the orbit
of (M,x) as it traces a trajectory through R4. For example (in LTL notation),

G(P1 ⇒ F¬P2) ∧ F(P3 ∨ ¬P1)

asserts that whenever the orbit visits P1, then it must eventually subsequently
visit the complement of P2, and moreover that the orbit will eventually either
visit P3 or the complement of P1. The reader will probably agree that whether or
not the above assertion holds for our LDS (M,x) is not immediately obvious to
determine (even, arguably, in principle). Nevertheless, this example falls within
the scope of [37], as the semialgebraic predicates P1, P2, and P3 are each either
contained in some three-dimensional subspace (this is the case for P1 and P2), or
have intrinsic dimension at most 1 (this is the case of P3, which is ‘string-like’,
or a curve, as a subset of R4). Naturally, we shall return to these notions in due
course, and articulate the relevant results in full details.

A recent and closely related line of inquiry concerns the study of alge-
braic model checking of linear dynamical systems [42]. The setting is similar
to the above, the only difference being that the allowable predicates are the
constructible ones, i.e., built from algebraic sets6 using arbitrary Boolean oper-
ations (including complementation). The paper [42] introduces in addition the
key notion of Skolem oracle, which we discuss next.

1.1 Skolem Oracles

There is an intimate connection between linear dynamical systems and linear re-
currence sequences. An (integer) linear recurrence sequence (LRS) u = ⟨un⟩∞n=0

is an infinite sequence of integers satisfying

un+d = c1un+d−1 + · · ·+ cd−1un+1 + cdun (1)

for all n ∈ N, where the coefficients c1, . . . , cd are integers and cd ̸= 0. We say
that the above recurrence has order d. We moreover say that an LRS is simple

a quality of properties that are asymptotic in nature—we provide a precise definition
shortly.

6 Algebraic sets correspond to positive Boolean combinations of polynomial equalities.
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if the characteristic polynomial7 of its minimal-order recurrence has no repeated
roots. The sequence of Fibonacci numbers ⟨fn⟩∞n=0 = ⟨0, 1, 1, 2, 3, 5, . . .⟩, which
obeys the recurrence fn+2 = fn+1 + fn, is perhaps the most emblematic LRS,
and also happens to be simple.

The celebrated theorem of Skolem, Mahler, and Lech (see [31]) describes the
structure of the set {n ∈ N : un = 0} of zero terms of an LRS as follows:

Theorem 1. Given a linear recurrence sequence u = ⟨un⟩∞n=0, its set of zero
terms is a semilinear set, i.e., it consists of a union of finitely many full arith-
metic progressions,8 together with a finite set.

As shown by Berstel and Mignotte [14], in the above one can effectively
extract all of the arithmetic progressions; we refer herein to the corresponding
procedure as the ‘Berstel-Mignotte algorithm’. Nevertheless, how to compute
the leftover finite set of zeros remains open, and is easily seen to be equivalent
to the Skolem Problem: given an LRS u, does u contain a zero term?

The paper [42] therefore introduces the notion of a Skolem oracle: given an
LRS u = ⟨un⟩∞n=0, such an oracle returns the finite set of indices of zeros of
u that do not already belong to some infinite arithmetic progression of zeros.
Likewise, a Simple-Skolem oracle is a Skolem oracle restricted to simple LRS.

As mentioned earlier, the decidability of the Skolem Problem is a longstand-
ing open question [31,49], with a positive answer for LRS of order at most 4
known since the mid-1980s [53,55]. Very recently, two major conditional ad-
vances on the Skolem Problem have been made, achieving decidability subject
to certain classical number-theoretic conjectures: in [40], Lipton et al. established
decidability for LRS of order 5 assuming the Skolem Conjecture (also known as
the Exponential Local-Global Principle); and in [15], Bilu et al. showed decidabil-
ity for simple LRS of arbitrary order, subject to both the Skolem Conjecture and
the p-adic Schanuel Conjecture (we refer the reader to [15] for the precise defi-
nitions and details). It is interesting to note that in both cases, the procedures
in question rely on the conjectures only for termination; correctness is uncondi-
tional. In fact, these procedures are certifying algorithms (in the sense of [45])
in that, upon termination, they produce an independent certificate (or witness)
that their output is correct. Such a certificate can be checked algorithmically by
a third party with no reliance on any unproven conjectures. The authors of [15]
have implemented their algorithm within the skolem tool, available online.9

In view of the above, Simple-Skolem oracles can be implemented with un-
conditional correctness, and guaranteed termination subject to the Skolem and
p-adic Schanuel conjectures. Whether full Skolem oracles can be devised is the
subject of active research (see, e.g., [41,43]); at the time of writing, to the best
of our knowledge, no putative procedure is even conjectured in the general (non-
simple) case.

7 The characteristic polynomial associated with recurrence (1) isXd−c1X
d−1−. . .−cd.

8 A full arithmetic progression is a set of non-negative integers of the form {a+ bm :
m ∈ N}, with a, b ∈ N and a < b.

9 https://skolem.mpi-sws.org/ .
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1.2 Paper Outline

Questions of reachability and model checking for linear dynamical systems con-
stitute one of the central foci of this paper. In Section 2, we cover the state of the
art and beyond, both unconditionally and relative to Skolem oracles. We paint
what is essentially a complete picture of the landscape, in each situation estab-
lishing either decidability (possibly conditional on Skolem oracles), or hardness
with respect to longstanding open problems. An important theme in the classical
theory of dynamical systems concerns the study of asymptotic properties (e.g.,
stability, convergence, or divergence of orbits), and we therefore consider both
MSO along with its prefix-independent fragment piMSO. Section 3 then focusses
on questions of robustness through the notion of pseudo-orbit. In Section 4, we
discuss the algorithmic synthesis of inductive invariants for linear dynamical
systems, and Section 5 examines the situation in which orbits originate from an
initial set rather than a single point. Finally, Section 6 concludes with a brief
summary and a glimpse of several research directions.

2 Model Checking

Throughout this section, we assume familiarity with the rudiments of Monadic
Second-Order Logic (MSO); an excellent reference is the text [16].

Let us work in fixed ambient space Rd, and consider a d-dimensional LDS
(M,x) (i.e., M ∈ Qd×d and x ∈ Qd). Recall that the orbit O = O(M,x) of our
LDS is the infinite sequence ⟨x,Mx,M2x, . . .⟩ in Qd. Let us write O[n] for the
nth term of the orbit.

Given an MSO formula φ over the collection of semialgebraic predicates
P = {P1, . . . , Pm}, where each Pi ⊆ Rd, the model-checking problem consists in
determining whether the orbit (more precisely, the characteristic word α ∈

(
2P

)ω
of the orbit O(M,x) with respect to P, where Pi ∈ α[n] iff O[n] ∈ Pi) satisfies
φ. Reachability problems for LDS constitute special cases of the model-checking
problem, and already the questions of determining whether a given orbit reaches
a hyperplane (Skolem Problem) or a halfspace (the Positivity Problem [46])
are longstanding open problems in number theory, couched in the language of
linear dynamical systems. Recent research has, however, succeeded in uncovering
several important decidable subclasses of the model-checking problem and in
demarcating the boundary between what is decidable and what is hard with
respect to longstanding open mathematical problems.

In order to present the main results, we require some further definitions to
specify the classes of predicates that are allowed within MSO formulas. Let us

write S ⊆ 2R
d

and C ⊆ 2R
d

to denote respectively the collections of all semialge-
braic subsets of Rd and of all constructible subsets of Rd.10 We also define the
collection T ⊆ 2R

d

of tame sets as follows: T comprises all semialgebraic subsets

10 Recall that C is the smallest set containing all algebraic subsets of Rd, and which is
closed under finite union, finite intersection, and complement. (The terminology of
“constructible” originates from algebraic geometry.)
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of Rd that are either contained in a three-dimensional subspace of Rd, or that
have intrinsic dimension at most one.11 Moreover, T is defined to be the smallest
such set which is in addition closed under finite union, finite intersection, and
complement. Finally, we define the set T ⊕C to be the smallest superset of T ∪C
that is closed under finite union, finite intersection, and complement.

Note that all of S, C, T , and T ⊕ C are closed under all Boolean operations;
this is in keeping with their intended use as collections of predicates for MSO
formulas, bearing in mind that MSO itself possesses all Boolean operators.

The motivation for considering the collection T of tame predicates has origins
in the results of [21,38,6,9]. A common theme is that for tame predicates, the
proofs that establish how to decide reachability also provide one with a means
of representing, in a finitary manner, all the time steps at which the orbit of
a given LDS is in a particular predicate set T . The authors of [37] show how
to combine these representations (one for each predicate) to obtain structural
information about the characteristic word α that is sufficient for determining
whether a deterministic automaton A accepts α, leading to the following.

Theorem 2. Let (M,x) be an LDS, P = {T1, . . . , Tm} ⊆ T be a collection
of tame predicates and φ be an MSO formula over P. It is decidable whether
(M,x) ⊨ φ (i.e., whether the characteristic word α of the orbit O(M,x) with
respect to P satisfies φ).

Let us note in passing that Theorem 2 subsumes the decidability of the
Kannan-Lipton Point-to-Point Reachability Problem, since points are singleton
sets and the latter are evidently tame.

It is also worth pointing out, absent other restrictions, that this delineation
of the decidable fragment of the model-checking problem is tight as trying to
expand the definition of tame predicates runs into open problems already for
formulas that describe mere reachability properties. In particular, the Skolem
Problem in dimension 5 is open and can be encoded (i) as a reachability problem
with a four-dimensional LDS and a three-dimensional affine subspace [21] (that
is, in general, not contained in a three-dimensional linear subspace) and (ii) as
a reachability problem with a target of intrinsic dimension two [9].

To sidestep these obstacles, in [4] the authors restrict φ to formulas that de-
fine prefix-independent properties. A property is prefix-independent if the infinite
words that satisfy it are closed under the operations of insertion and deletion of
finitely many letters.12 Such properties capture behaviours that are intrinsically

11 The intrinsic dimension of a semialgebraic set is formally defined via cell decompo-
sition; intuitively, one-dimensional semialgebraic sets can be viewed as ‘strings’ or
‘curves’, whereas zero-dimensional semialgebraic sets are finite collections of single-
ton points.

12 It is interesting to note that whether an MSO formula φ is prefix-independent or not
is decidable. To see this, for A = (Q, q0, Σ,∆, F ) a deterministic Müller automaton,
define A(q), for q ∈ Q, to be the same as A, except that the initial state of A(q) is
q (rather than q0). We say that a deterministic Müller automaton A (as above) is
prefix-independent if, for all q ∈ Q that are reachable from q0, A(q) recognises the
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asymptotic in nature (for example: “does the orbit enter P infinitely often?”);
note that the property of reachability is not prefix-independent. The main the-
orem of [4] in this direction concerns diagonalisable linear dynamical systems:13

Theorem 3. Let (M,x) be a diagonalisable LDS and φ be a prefix-independent
MSO formula over a collection of semialgebraic predicates S1, . . . , Sm ∈ S. It is
decidable whether (M,x) ⊨ φ.

Note in the above that the semialgebraic predicates are entirely unrestricted
(in particular, not required to be tame). However, the restrictions to prefix-
independent formulas and to diagonalisable systems both again turn out to
be essential. Since the Skolem Problem is open for diagonalisable systems (in
dimensions d ≥ 5), the (non-prefix-independent) model-checking problem for
diagonalisable LDS is Skolem-hard already for four-dimensional systems and
affine subspace targets, as discussed earlier. On the other hand, if we allow non-
diagonalisable systems, then the problem of determining whether the orbit of an
LDS is eventually trapped in a given half-space H (known as the Ultimate Pos-
itivity Problem, corresponding to the prefix-independent formula φ = FGH)
is hard with respect to certain longstanding open problems in Diophantine ap-
proximation [46].

This last observation however suggests that it might be possible to orches-
trate a trade-off between the type of LDS under consideration and the class
of allowable specification predicates. Indeed, it turns out that one can lift the
restriction to diagonalisable LDS if one agrees to restrict the class of predicates:

Theorem 4. Let (M,x) be an LDS and φ be a prefix-independent MSO for-
mula over a collection of predicates P1, . . . , Pm ∈ T ⊕ C. It is decidable whether
(M,x) ⊨ φ.

Theorem 4 goes beyond both Theorem 2 (in that constructible predicates
are allowed into the mix) as well as [42, Thm. 7.3] (in that tame predicates are
allowed).

Let us provide a brief proof sketch of Theorem 4. Let (M,x) and φ be
as above. Observe first (as a straightforward exercise) that any P ∈ T ⊕ C
can be written in conjunctive normal form, i.e., as an expression of the form
P =

⋂a
i=1

⋃b
j=1Bi,j , where each Bi,j is either a tame predicate or a constructible

predicate. Without loss of generality, one may therefore assume that each pred-
icate appearing in φ is either tame or constructible.

We now invoke [42, Prop. 5] to conclude that, for each constructible predicate
Bℓ appearing in φ, the Boolean-valued word αℓ tracking the passage of the orbit

same language as A. Write L(A) to denote the language recognised by A. It is now
straightforward to show that A is prefix-independent iff L(A) is prefix-independent.
Since any MSO formula is encodable as a deterministic Müller automaton, and
equality of ω-regular languages is decidable, the desired decidability result follows.

13 An LDS (M,x) is diagonalisable if the matrix M is diagonalisable (over C). In a
measure-theoretic sense, most LDS are diagonalisable.



8 T. Karimov et al.

of (M,x) through Bℓ is ultimately periodic. Moreover, thanks to the Berstel-
Mignotte algorithm, the attendant arithmetic progressions can all be effectively
elicited. For each such αℓ, one can therefore construct a (fully) periodic word
α′
ℓ which differs from αℓ in at most finitely many places. In other words, for all

sufficiently large n, Mnx ∈ Bℓ iff α′[n] = true. Being periodic, α′
ℓ can in turn

be described by an MSO subformula ψℓ. Let us therefore replace within φ every
occurrence of a constructible predicate Bℓ by the subformula ψℓ, obtaining in
this process a new MSO formula φ′ that comprises exclusively tame predicates.
As φ is prefix-independent, it is immediate that (M,x) ⊨ φ iff (M,x) ⊨ φ′.
But the latter is of course decidable thanks to Theorem 2, concluding the proof
sketch of Theorem 4.

Once again, Theorem 4 is tight: in Appendix A, we show that the ability
to solve the model-checking problem for prefix-independent MSO specifications
making use of semialgebraic predicates in ambient space R4 would necessarily
entail major breakthroughs in Diophantine approximation.

Let us now turn to the question of the extent to which the above results can
be enhanced through the use of Skolem oracles. The key result is as follows, in
effect enabling us to drop the restriction of prefix-independence from Theorem 4:

Theorem 5. Let (M,x) be an LDS and φ be an MSO formula over a collection
of predicates P1, . . . , Pm ∈ T ⊕ C. It is decidable whether (M,x) ⊨ φ, subject to
the existence of a Skolem oracle.

The same result also holds for diagonalisable LDS, assuming the existence of
a Simple-Skolem oracle.

The proof of Theorem 5 is similar to that of Theorem 4; we provide a brief
sketch below.

Let (M,x) and φ be as above, and assume, thanks to the representation of
(T ⊕C)-predicates in conjunctive normal form, that every predicate occurring in
φ is either tame of constructible. Thanks to [42, Cor. 6], for each constructible
predicate Bℓ appearing in φ, the Boolean-valued word αℓ tracking the passage
of the orbit of (M,x) through Bℓ is effectively ultimately periodic (this requires
the use of a Skolem oracle, or a Simple-Skolem oracle if M is diagonalisable).
In other words, we have a finitary exact representation of αℓ, and can therefore
describe it via an MSO subformula ψℓ.

We can now replace within φ every occurrence of a constructible predicate Bℓ

by its corresponding subformula ψℓ, obtaining in this process an equivalent MSO
formula φ′ that comprises exclusively tame predicates. The desired result then
immediately follows from Theorem 2, concluding the proof sketch of Theorem 5.

As noted earlier, Simple-Skolem oracles can be implemented into provably
correct certifying procedures which terminate subject to classical number-theoretic
conjectures [15]. Let us therefore separately record an important corollary:

Corollary 1. Let (M,x) be a diagonalisable LDS and φ be an MSO formula
over a collection of predicates P1, . . . , Pm ∈ T ⊕ C. It is decidable whether
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(M,x) ⊨ φ, assuming the Skolem Conjecture and the p-adic Schanuel Con-
jecture. Moreover, correctness of the attendant procedure is unconditional, and
independent correctness certificates can be produced upon termination.

Let us point out that Theorem 5 is, once again, tight. For arbitrary LDS,
a similar argument as that put forth in Appendix A applies, since it is not
known (or even believed) that Skolem oracles are of any use in tackling Ulti-
mate Positivity problems. For diagonalisable LDS, we can invoke the order-10
Simple Positivity Problem, which remains open to this day (see [46]); it can be
modelled straightforwardly as a half-space reachability problem in ambient space
R10 (or even R9, by considering an affine half-space). In fact, critical unsolved
cases of order-10 Positivity can even be formulated as semialgebraic reachability
problems in ambient space R4; we omit the details in the interests of space and
simplicity of exposition.

We summarise the main results of this section in Figure 2 below.

Diagonalisable LDS:

unconditional Simple-Skolem oracle

piMSO S (Thm. 3) S (Thm. 3)

MSO T (Thm. 2) T ⊕ C (Thm. 5)

Arbitrary LDS:

unconditional Skolem oracle

piMSO T ⊕ C (Thm. 4) T ⊕ C (Thm. 4 or Thm. 5)

MSO T (Thm. 2) T ⊕ C (Thm. 5)

Fig. 2. A summary of the decidable model-checking fragments for both diagonalisable
and arbitrary linear dynamical systems. The prefix-independent fragment of MSO is
denoted piMSO. S is the collection of semialgebraic predicates, T is the collection of
tame predicates (Boolean closure of semialgebraic sets that either are contained in a
three-dimensional subspace, or have intrinsic dimension at most one), C is the collection
of constructible predicates (Boolean closure of algebraic sets), and T ⊕C is the Boolean
closure of T ∪ C. The right-hand columns in both tables assume access to Skolem or
Simple-Skolem oracles.

Taken together, Theorems 2–5, along with Corollary 1, not only subsume—
to the best of our knowledge—all existing results regarding model-checking and
reachability problems for discrete linear dynamical systems, but moreover paint
an essentially complete picture of what is (even in principle) feasible, barring
major breakthroughs in longstanding open problems. It is noteworthy that, in
this characterisation, there appears to be very little difference between being
able to decide mere reachability for a given class of predicates, and being able
to decide the whole of MSO over the same class of predicates.
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3 Pseudo-Reachability and Robustness

In this section we discuss decision problems about pseudo-orbits that are related
to robustness of computation. Given an LDS (M,x), recall that the orbit of
x under M is the sequence ⟨x,Mx,M2x, . . . ⟩. We say that the sequence ⟨xn :
n ∈ N⟩ is an ε-pseudo-orbit of x under M if x0 = x and xn+1 = Mxn + dn
for some perturbation dn with ||dn|| < ϵ. The pseudo-orbit of x under M is
then defined as the set of points that are reachable from x via an ε-pseudo-
orbit for every ϵ > 0. This notion of an (ε-)pseudo-orbit, introduced and studied
by Anosov [8], Bowen [17] and Conley [25], is an important conceptual tool in
dynamical systems. From the computational perspective, an ε-pseudo-orbit can
be viewed as a trajectory after a rounding error of magnitude at most ϵ is applied
at each step.

Given these definitions, we can consider the reachability and model-checking
problems for pseudo-orbits. A natural analogy to the Kannan-Lipton Orbit Prob-
lem is the Pseudo-Orbit Problem, which is to determine whether a target point y
belongs to the pseudo-orbit of x underM . In [28] the authors show that, just like
the Orbit Problem, the Pseudo-Orbit Problem is decidable in polynomial time.
Generalising from points to sets, let us say that a target set T is pseudo-reachable
if for every ϵ > 0 there exists an ε-pseudo-orbit of x underM that reaches T . We
can then define the Pseudo-Skolem Problem and the Pseudo-Positivity Problem
to be the pseudo-reachability problems with a hyperplane and a halfspace as
target sets, respectively. Surprisingly, [28] shows that both of these problems are
in fact decidable! Moreover, [29] establishes decidability of pseudo-reachability
with arbitrary semialgebraic targets for diagonalisable linear dynamical systems.

Inspired by the above results, one might consider the model-checking problem
for pseudo-orbits, namely the problem of determining, given (M,x) and a formula
φ, whether for every ε > 0, there exists an ε-pseudo-orbit that satisfies φ. After
all, as discussed in the preceding section, for genuine orbits the fragments of
the reachability problem and the full MSO model-checking problem that are
known to be decidable (i.e., the restrictions on the class of predicates and the
property φ that make the problems decidable) are essentially the same. This
optimism is, however, quickly shattered by the following observation. Let H be
a closed halfspace and φ be the property GH (“the trajectory always remains
inside H”). Then the pseudo-orbits satisfy φ (in the sense defined above) if and
only the (genuine) orbit satisfies φ. The problem of determining whether the
orbit O(M,x) always remains in H, is however, equivalent to the problem of
determining whether the orbit ever hits an open halfspace, which itself is the
Positivity Problem (a longstanding open question).

4 Invariant Generation

In the absence of fully general algorithms to decide whether the orbit of a
given LDS reaches targets of arbitrary forms, much effort has been expended on
sound—but possibly incomplete—techniques, and particularly on constructing



What’s Decidable about Discrete Linear Dynamical Systems? 11

certificates of (non-)reachability. This splits into two broad lines of attack: rank-
ing functions and invariants. The former are certificates of reachability, demon-
strating that progress is being made towards the target. Inductive invariants
are, on the other hand, certificates of non-reachability, establishing that the or-
bit will not reach the target by enclosing the former within a set that is itself
disjoint from the latter. We focus in this section on the algorithmic generation
of invariants.

More precisely, a set I ⊆ Rd is said to be an inductive invariant of (M,x) if
it contains x (x ∈ I), and is stable under M , that is:

MI def
= {My : y ∈ I} ⊆ I .

Clearly there are some trivial invariants, such as Rd and the orbit O(M,x) itself.
They are not particularly useful in the sense that the ambient space Rd is never
disjoint from whatever target might be under consideration, whereas for various
classes of targets (such as hyperplanes or half-spaces; or more generally arbitrary
semialgebraic sets) we do not in general know how to decide whether O(M,x)
is disjoint from the target. Hence one does not seek any invariant, but rather an
invariant that can be algorithmically established to be disjoint from the target.

We therefore seek a sufficiently large, or expressive, class of invariants F which
moreover exhibits favourable algorithmic properties. A natural family to consider
is the collection of all semialgebraic sets. We now have:

Theorem 6 ([3]). Given an LDS (M,x) in ambient space Rd, together with a
semialgebraic target T ⊆ Rd, it is decidable whether there exists a semialgebraic
invariant of (M,x) that is disjoint from T .

Furthermore, the algorithm explicitly constructs the invariant when it exists, in
the form of a Boolean combination of polynomial inequalities.

Theorem 6 holds for an even larger class F , namely that of o-minimal sets. We
give an informal definition. Recall the contents of Tarski’s quantifier-elimination
theorem, to the effect that semialgebraic subsets of Rd are closed under pro-
jections. Moreover, semialgebraic subsets of R are quite simple: they are finite
unions of intervals. Other families of sets that enjoy these two properties ex-
ist, notably those definable in the first-order theory of the real numbers aug-
mented with a symbol for the exponential function, an important result due to
Wilkie [56]. Structures of Rd that are induced by such logical theories are called
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o-minimal, and an o-minimal set is a set that belongs to such a structure [30].
These include semialgebraic sets, as well as sets definable in the first-order theory
of the reals with restricted analytic functions.

In [2], it is shown that it is decidable whether there exists an o-minimal
invariant (for a given LDS (M,x)) that is disjoint from a semialgebraic target
T ; and moreover, when such an invariant exists, it is always possible to exhibit
one that is in fact semialgebraic [3]. Once again, these results are effective, and
the invariants can always be explicitly produced.

Varying the class of invariants and the class of tar-
gets gives rise to a number of natural questions that—
for the most part—remain unexplored. Let us however
mention a further desirable property enjoyed both by
the class of o-minimal sets and that of semialgebraic
sets: in either case, they admit minimal families of
invariants, a notion which we now explain. Let F be a
class of sets—either the class of o-minimal sets or that
of semialgebraic sets. It is easy to verify that, in gen-
eral, F does not possess minimal invariants. Neverthe-
less, [2,3] show how to produce a sequence of (M,x)-
invariants ⟨Ck : k ∈ N⟩, all belonging to F , and such
that Ck+1 ⊂ Ck. It can moreover be shown that, given
any (M,x)-invariant I ∈ F , it is always the case that I contains one of the Ck,
and ipso facto also all Cj for j ≥ k.

5 Semialgebraic Initial Sets

Up until now we have exclusively considered problems concerning the orbit
O(M,x) of a single initial point x. It is natural to ask whether the algorith-
mic problems which we have discussed remain solvable if one instead considers
an entire set of initial points S ⊆ Rd. Unfortunately the answer is negative.
We sketch below the proof of the undecidability of a natural model-checking
problem.

Theorem 7. The following problem is undecidable. Given a natural number k ∈
N, a semialgebraic set S ⊆ Rd, a d × d rational matrix M , and a hyperplane
H in Rd (having rational normal vector), determine whether there exists x ∈ S
such that the orbit generated by (M,x) hits H at least k times.

In symbols, whether there is some x ∈ S such that

|O(M,x) ∩H| ≥ k

is undecidable.
It is worth noting that all the problems that we have discussed so far (includ-

ing the Skolem and Positivity Problems) are not known to be undecidable, and
are in fact widely conjectured to be decidable. It is therefore perhaps somewhat
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surprising that this natural generalisation of our setting immediately leads to
undecidability.

The proof of Theorem 7 proceeds by reduction from a variant of Hilbert’s
tenth problem. Recall that Hilbert’s tenth problem asks whether a given poly-
nomial P ∈ Z[Y1, Y2, . . . , Yd−1] with integer coefficients and d − 1 variables has
a root with all unknowns taking integer values. This problem is undecidable, as
shown by Davis, Putnam, Robinson, and Matiyasevich [44].

The variant that we will reduce from asks whether the polynomial has roots
with the unknowns being distinct natural numbers. It is straightforward to show
that this variant is also undecidable.

Let d ∈ N, d > 1, and P ∈ Z[Y1, Y2, . . . , Yd−1] be an arbitrary polynomial.
We define the subset S ⊆ Rd via a formula of the first-order theory of the reals:

S(x1, x2, . . . , xd)
def
= ∃y1, y2, . . . yd−1



0 = P (y1, y2, . . . , yd−1),

x1 = (1− y1)(1− y2) · · · (1− yd−1),

x2 = (2− y1)(2− y2) · · · (2− yd−1),
...

xd = (d− y1)(d− y2) · · · (d− yd−1).

A point x := (x1, . . . , xd) ∈ Rd is in the set S if and only if one can find real
numbers y1, . . . , yd−1 for which the above equations hold. The idea behind this
definition comes from the fact that, for x, y1, . . . , yd−1 as above, one can construct
a d× d matrix M with rational entries such that

(Mnx)1 = (n− y1)(n− y2) · · · (n− yd−1) ,

for all n ∈ N, where (·)1 refers to the first entry of the vector. Admitting the exis-
tence of such a matrix, letH be the hyperplane having normal vector (1, 0, . . . , 0)
and going through the origin. Then clearly O(M,x) enters H at least d−1 times
if and only if the reals y1, . . . , yd−1 are distinct natural numbers, because only
then is the first entry of Mnx—the polynomial (n− y1) · · · (n− yd−1)—equal to
zero.

The existence of the matrix M rests on the fact that the expression un =
(n− y1) · · · (n− yd−1) (for fixed y1, . . . , yd−1) can be obtained as a linear recur-
rence sequence of order d, and in turn such a linear recurrence sequence can be
represented as the sequence of fixed-position entries of increasing powers of a
fixed d× d matrix M . In the standard construction of this matricial representa-
tion, one must in addition set x1 = u1, x2 = u2, . . . , xd = ud, which is achieved
through the definition of our initial semialgebraic set S.

It is worth noting that Theorem 7 holds even if k is fixed, due to the fact
that Hilbert’s tenth problem remains undecidable for a fixed number of variables.
Furthermore, if k is fixed to be 1, then the problem becomes decidable in low
dimensions, however even in the case where the ambient space has dimension 2
and k = 2, the problem does not seem to be trivially decidable.
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6 Research Directions and Open Problems

We have presented an overview of the state of the art regarding decidability
and solvability of a range of algorithmic problems for discrete linear dynami-
cal systems, focussing on reachability, model-checking, and invariant-generation
questions. In the case of model checking in particular, we have painted an es-
sentially complete picture of what is achievable, both unconditionally as well
as relative to Skolem oracles. We pointed out that extending the existing re-
sults further runs up against formidable mathematical obstacles (longstanding
open problems in number theory); the work presented here therefore appears to
lie at the very frontier of what is attainable, barring major breakthroughs in
mathematics.

A central open question is whether Skolem oracles can actually be devised and
implemented. As remarked earlier, a certifying algorithm for the Simple-Skolem
Problem has recently been proposed, with termination relying on classical (and
widely believed) number-theoretic conjectures. Whether similar algorithms can
be obtained for the general Skolem Problem is the subject of active research.

An even more difficult question is whether oracles for the Positivity Prob-
lem (or Simple-Positivity Problem) can be devised. This would enable one to
circumvent the mathematical obstacles mentioned earlier, and allow one to sub-
stantially extend the scope of semialgebraic model checking for linear dynamical
systems. For the time being, this goal appears to be well out of reach.

In the present paper we have entirely confined ourselves to matters of decid-
ability, largely on account of space limitations, but also because the complexity-
theoretic picture is not nearly as clear-cut as its decidability counterpart. Pro-
viding a comprehensive account of the complexity landscape for linear dynamical
systems would be an interesting and promising research direction.

A Prefix-Independent Model Checking for LDS

The goal of this appendix is to exhibit boundaries on the extent to which The-
orem 4 can be improved. More precisely, we show that the ability to solve
the model-checking problem for arbitrary LDS against prefix-independent MSO
specifications making use of semialgebraic predicates in ambient space R4 would
necessarily entail major breakthroughs in Diophantine approximation.

We build upon the framework developed in [47, Sec. 5]. To this end, consider
the class of order-6 rational LRS of the form

un = −n+
1

2
(n− ri)λn +

1

2
(n+ ri)λ

n
= r Im(λn)− n(1− Re(λn)) ,

where λ ∈ Q(i) and |λ| = 1, and r ∈ Q. Let us write L to denote this class of
LRS.

It is shown in [47] that solving the Ultimate Positivity Problem for LRS in
L, i.e., providing an algorithm which, given an LRS ⟨un⟩∞n=0 ∈ L, determines
whether there exists some integer N such that, for all n ≥ N , un ≥ 0, would nec-
essarily entail major breakthroughs in the field of Diophantine approximation.
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The purpose of the present section is to reduce the Ultimate Positivity Prob-
lem for LRS in L to the prefix-independent semialgebraic MSO model-checking
problem for 4-dimensional LDS.

Given λ and r as above, let

M =


Re(λ) − Im(λ) 1 0
Im(λ) Re(λ) 0 1

0 0 Re(λ) − Im(λ)
0 0 Im(λ) Re(λ)

 and x =


1
1
1
1

 .
Observe that M has rational entries. We have that

Mnx =


Re(λn)− Im(λn) + nRe(λn−1)− n Im(λn−1)
Im(λn) + Re(λn) + n Im(λn−1) + nRe(λn−1)

Re(λn)− Im(λn)
Im(λn) + Re(λn)

 .
As a semialgebraic target consider the set S = {x : p(x) > 0}, where

p(x1, x2, x3, x4) =
r

2
(x4 − x3)−

x1 − x3
Re(λ−1)x3 − Im(λ−1)x4

(
1− x3 + x4

2

)
.

We now have that p(Mnx) = r Im(λn) − n(1 − Re(λn)), and that ⟨un⟩∞n=0 is
ultimately positive if and only if the orbit of x under M eventually gets trapped
in S. This can be expressed by the prefix-independent LTL formula φ = FGS.
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