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Abstract
A fundamental question in logic and verification is the following: for which unary predicates
P1, . . . , Pk is the monadic second-order theory of ⟨N; <, P1, . . . , Pk⟩ decidable? Equivalently, for
which infinite words α can we decide whether a given automaton A accepts α? Carton and Thomas
showed decidability in case α is a fixed point of a letter-to-word substitution σ, i.e., σ(α) = α.
However, abundantly more words, e.g., Sturmian words, are characterised by a broader notion of
self-similarity that uses a set S of substitutions. A word α is said to be directed by a sequence
s = (σn)n∈N over S if there is a sequence of words (αn)n∈N such that α0 = α and αn = σn(αn+1) for
all n; such α is called S-adic. We study the automaton acceptance problem for such words and prove,
among others, the following. Given finite S and an automaton A, we can compute an automaton B
that accepts s ∈ Sω if and only if s directs a word α accepted by A. Thus we can algorithmically
answer questions of the form “Which S-adic words are accepted by a given automaton A?”
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1 Introduction

In 1962, Büchi proved that the monadic second-order (MSO) theory of the structure ⟨N; <⟩
is decidable [8], and, in doing so, laid the foundations of the theory of automata over infinite
words. Subsequently, Elgot and Rabin [12] adopted automata-theoretic techniques to show
how to decide the MSO theory of ⟨N; <, P ⟩ for various interesting unary predicates P including
{n! : n ∈ N} and {2n : n ∈ N}. By then, it was already known that unary predicates lay at
the frontiers of decidability: expanding ⟨N; <⟩ with most natural functions (e.g., addition or
doubling) or non-unary predicates yields undecidable MSO theories [22, 26, 25]. The question
thus arose: for which unary predicates P1, . . . , Pk is the MSO theory of ⟨N; <, P1, . . . , Pk⟩
decidable? Equivalently, for which infinite words α is the automaton acceptance problem1,
which asks whether a given automaton A accepts α, decidable?

The automaton acceptance problem under various assumptions on α has been studied,
among others, by Semënov, Carton and Thomas, and Rabinovich [23, 10, 21]. Semënov [23]
showed decidability for α that are effectively almost-periodic. These include, for example,
the Thue-Morse word and toric words, which are obtained from certain compact dynamical
systems [6]. Carton and Thomas [10], on the other hand, used algebraic methods to show
decidability for morphic α, which include α that can be constructed by infinitely iterating a
letter-to-word morphism σ on a starting letter a. Their result implies, in one fell swoop, the
decidability of the MSO theory of ⟨N; <, {p(n)an : n ∈ N}⟩ where a ≥ 1 and p is a polynomial
with integer coefficients satisfying p(N) ⊆ N.

By now, the study of the automaton acceptance problem for various special classes of α has
led to rich interactions between word combinatorics, algebra (particularly monoid and group

1 Here the problem is parametrised by α; the only input is the automaton A.
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theory), number theory, and formal verification. For example, effectively almost-periodic
words of Semënov have been identified as a powerful tool for analysing the behaviour of
linear while loops in program verification [18]. More recently, [5] showed the decidability of
the MSO theory of ⟨N; <, aN, bN⟩ using the fact that the order in which powers of coprime
a and b occur is captured by a certain Sturmian word (Sec. 3.1). Sturmian words are an
extremely well-studied and fundamental class of “special words” that appear naturally in a
range of fields including number theory, computer graphics, and astronomy [1, Chap. 9.6],
[13, Chap. 6]. We refer the reader to [6] for a more detailed survey of the role of Sturmian
words, and word combinatorics in general, in logic and verification.

In this paper, we are motivated by questions of the form, “Given an ω-regular language L,
decide whether it contains a Sturmian word.” (Of course, we can also ask about any
other combinatorial class.) Our approach adopts the S-adic perspective, a powerful tool
for elucidating combinatorial properties of infinite words. Akin to the continued fraction
expansion of a real number, or even a Fourier decomposition of a signal, we write an infinite
word α as an infinite composition of (possibly different) substitutions. A substitution σ over
an alphabet Σ gives rules to replace each letter a ∈ Σ with a non-empty word σ(a) ∈ Σ+, thus
producing self-similarity. For example, the Fibonacci substitution σfib over {0, 1} replaces
0 with 01 and 1 with 0; the Fibonacci word αfib = 01001010 · · · is obtained as the limit of
iterating σfib infinitely on the letter 0 (or, alternatively, the letter 1). Hence we have the
infinite decomposition αfib = σfib ◦ · · · ◦ σfib · · · . In general, we have a set S of substitutions,
and say that a sequence s over S directs α ∈ Σω if there there exists a sequence of words(
α(n))

n∈N such that α(0) = α, and α(n) = σn

(
α(n+1)) for all n. This gives us the S-adic

decomposition α = σ0 ◦ σ1 ◦ · · · .2 We refer to any s ∈ Sω as a directive sequence.

Entire classes of words such as Sturmian and Arnoux-Rauzy words (Sec. 3.1) can be
defined in terms of directive sequences over a specific S; such a class W is called S-adic.
Our central question is the following: given an ω-regular language L ⊆ Σω and an S-adic
class of words W ⊆ Σω, what is the set of all α ∈ W that are contained in L? Does
there exist at least one such α? Equivalently, given an MSO formula φ, can we decide
whether there exists α ∈ W that induces a structure in which φ holds? We remark that
this question is similar in spirit to the problem solved in [16]: given a first-order formula φ,
it is decidable whether there exists a Sturmian word α such that φ holds in the induced
first-order structure ⟨N; <, +, Pα := {n : α(n) = 1}⟩. The key idea there is that the class of
structures ⟨N; <, +, Pα⟩, where α ranges over all Sturmian words, is automatic [24].

Our main contribution is that ω-regular specifications on words in the Σ-space translate
to ω-regular constraints on the directive sequences in the original S-space of substitutions.
Hence the common MSO theory of an S-adic class of words is decidable. This generalises
the result of [2] that, given finite S and an automaton A whose language is closed (i.e., a
Büchi automaton whose states are all accepting), it is decidable whether A accepts a word
directed by S. Our algorithms thoroughly answer questions of the kind “Which S-adic words
are accepted by a given automaton A?” For example, given two words u, v ∈ {0, . . . , d − 1}∗

and a, b with b ̸= 0, we can compute an effective representation (as an ω-regular language
of directive sequences) of all Arnoux-Rauzy words in which between any two consecutive
occurrences of u, the number of occurrences of v is congruent to a modulo b.

2 Of course, we are not interested in trivial decompositions that, for example, just permute the letters
back and forth, as these do not tell us anything new about α.



V. Berthé et al. 3

Outline and contributions of the paper
In Sec. 2 we establish the necessary mathematical background. In Sec. 3 we formally define
what it means for a directive sequence to generate and to direct a word. Briefly, a sequence
of substitutions (σn)n∈N generates α if there exists a sequence of letters (an)n∈N such that
α = limn→∞ σ0 · · · σn(an); generating a word is a strong form of directing it. We then
recall well-known properties of directive sequences, the most important of them being weak
primitivity, and then describe Sturmian and Arnoux-Rauzy words, which are the most-well
known examples of S-adic words (see e.g. [13, 4]).

In Sec. 4 we study the structure of words directed or generated by directive sequences.
Our key new insight is the augmentation of a directive sequence s over3 S into a congenial
expansion ŝ over S × Σ (Def. 9), which generates a word incrementally and predictably
(Lem. 10). We prove the following pivotal results.

If s generates α, then it also directs α (Lem. 6).
A word α directed by s is a concatenation of words generated congenially by s (Lem. 12).
For s weakly primitive, s congenially generates α if and only if it directs α (Lem. 14).

In Sec. 5 we introduce a suitable equivalence relation of finite index on substitutions
modulo a semi-group associated with a given ω-regular language L, inspired by the syntactic
monoid of L, that behaves well with respect to infinite composition of substitutions; we
denote the set of classes by ΞL. Given a sequence s over the set of substitutions S or a
sequence ŝ over S × Σ, we naturally define its trace to be, respectively, a word over ΞL or
over ΞL × Σ. In Sec. 6 and 7 we use our two key ingredients, the notion of congeniality
together with the monoid ΞL of equivalence classes, to prove our main results.
Morphic Words Let A be an automaton over Σ, and σ, π be substitutions. Using only the

respective equivalence classes ξ, ζ ∈ ΞL of the latter, we can compute a regular language
L ⊆ Σ+ such that the word π(σω(u)) is well-defined and accepted by A if and only if
u ∈ L (Thm. 21). We can thus characterise all such π, σ, u, which generalises the result
of [10] that it is decidable whether a given morphic word is accepted by A.

Generated Words Given an automaton A over Σ, we can construct an automaton B over
ΞL × Σ such that B accepts the trace of ŝ if and only if ŝ is congenial and generates a
word accepted by A (Thm. 23).

Directed Words Given A as above, we can construct an automaton B over ΞL such that
B accepts the trace of s if and only if s directs a word accepted by A (Thm. 26). This
further generalises the result of [10] from infinite compositions of a single substitution σ

to arbitrary infinite compositions over a set of substitutions S.

In Sec. 8, we refine our main results for Sturmian and Arnoux-Rauzy words, which have
an a priori known factor complexity (Sec. 2.3). We show that for such classes, acceptance
by A is completely determined by the first N(A) partial quotients of the directive sequence
(Thm. 30). In the case of Sturmian words, this has a nice geometric interpretation: an
automaton can only resolve the slope and intercept associated with a Sturmian word up to a
“pre-determined” finite precision.

2 Preliminaries

An alphabet Σ is a finite and non-empty set of symbols. We write ε for the empty word.
For a word α, α(j) denotes the letter at the jth position of α, α[i, j) denotes the finite word

3 Our set S of substitutions could possibly be infinite.
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α(i) · · · α(j − 1), and α[j, ∞) denotes the infinite word α(j)α(j + 1) · · · . A finite word u is a
factor of a word v if there exist indices i, j such that v[i, j) = u. When we say that an object
is effectively computable, we mean that a representation in a scheme (that will be clear from
the context) is effectively computable.

A substitution σ is a non-erasing morphism from Σ∗ to Σ∗, i.e., σ(v) = ε if and only
if v = ε. We denote the set of all such substitutions by S(Σ). For substitutions µ, σ, we
write µσ for µ ◦ σ. A substitution is positive if every b ∈ Σ appears in σ(a) for all a ∈ Σ,
and left-proper if the images of all letters by σ begin with the same letter. For more on the
subject of substitutions, see e.g. [13].

2.1 Topology of finite and infinite words
We equip Σ∞ := Σ+ ∪ Σω with the product topology, and define the distance between words
u, v to be 2−n, where n is the first position in which they differ. E.g., distinct a, b ∈ Σ are a
distance of 20 = 1 apart. A notion of convergence of sequences of words follows naturally.

▶ Definition 1. Let (un)n∈N be a sequence of finite non-empty words. We define α =
limn→∞ un ∈ Σ∞ ∪ {⊥} as follows.

If there exists v ∈ Σ∗ and N such that for all n ≥ N , un = v, then α = v.
If there exists β ∈ Σω such that for all j, un[0, j) = β[0, j) for all sufficiently large n,
then α = β.
Otherwise, α = ⊥, which denotes lack of convergence in Σ∞.

Under this topology, Σ∞ is compact. The cylinder sets defined by fixing finitely many letters
are both closed and open.

2.2 Automata and semigroups for infinite words
We consider infinite words and ω-regular languages from the algebraic and combinatorial
perspectives. A language L ⊆ Σω is ω-regular if and only if it can be recognised by a
(nondeterministic) Büchi automaton A = (Σ, Q, I, ∆, F ), where Σ is the alphabet, Q is the
finite set of states, I ⊆ Q is the set of initial states, ∆ ⊆ Q × Σ × Q is the transition relation,
and F is the set of accepting states. A run r ∈ Qω of the automaton on an input word α

satisfies r(0) ∈ I, and for all n, (r(n), α(n), r(n + 1)) ∈ ∆. A word α is accepted if it has a
run r such that r(n) ∈ F for infinitely many n.

Some of our technical tools, e.g. Semënov’s theorem, require the automaton to be
deterministic, i.e., there must be a single initial state, and the transition relation must induce
a function δ : Q × Σ → Q. For this reason, we also use deterministic parity automata, which
are further equipped with a function index : Q → N. In the case of deterministic parity
automata, a word α has a single run r, and is accepted if lim supn→∞ index(r(n)) is even.
Deterministic parity automata recognise precisely the class of ω-regular languages. Thus, in
most contexts, “automaton” can interchangeably be taken to mean nondeterministic Büchi
automaton, or deterministic parity automaton.

We now recall ω-semigroups (see [20, Sec. 7]) as an equivalent way to recognise ω-regular
languages. Formally, an ω-semigroup M = (Mf , Mω) is a two-sorted algebra equipped with
the following operations:
1. A binary operation defined on Mf and denoted multiplicatively,
2. A mapping Mf × Mω → Mω, called the mixed product, also denoted multiplicatively,
3. An infinite product π that maps infinite sequences over Mf to an element of Mω.
These operations must satisfy the following associativity properties:
1. Mf , equipped with the binary operation, is a semigroup.
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2. For every m1, m2 ∈ Mf and m3 ∈ Mω, we have that (m1m2)m3 = m1(m2m3).
3. For every sequence (mn)n∈N over Mf , and every strictly increasing sequence (kn)n∈N of

indices, we have that π(m0, m1, m2, . . .) = π(m0 · · · mk0 , mk0+1 · · · mk1 , . . .).
4. For every m ∈ Mf and every sequence (mn)n∈N over Mf , we have that m·π(m0, m1, . . .) =

π(m, m0, m1, · · · ).
The last two conditions show that the infinite product π(m0, m1, . . .) can also be denoted
multiplicatively as m0m1 · · · . Indeed, an ω-semigroup can be intuited as a semigroup where
infinite products are defined. An immediate example is Σ∞ with word concatenation, where
Mf = Σ+, and Mω = Σω.

Given ω-semigroups M1, M2 a morphism h of ω-semigroups is a pair hf , hω such that
hf is a semigroup morphism from M1,f into M2,f , and hω is a map from M1,ω to M2,ω

preserving the mixed product and infinite product, i.e., for every m1 ∈ M1,f and m2 ∈
M1,ω, hf (m1)hω(m2) = hω(m1m2), and for every sequence (mn)n∈N over M1,f , we have
hf (m0)hf (m1) · · · = hω(m0m1 · · · ). We shall thus omit subscripts and denote the application
of a morphism by simply h. As an immediate examples, a non-erasing substitution σ defines
a morphism from Σ∞ to Σ∞.

A set L ⊆ Σ∞ is recognised by a morphism h from Σ∞ into an ω-semigroup M if there
exists a subset H ⊆ Mf ∪ Mω such that L = h−1(H). A language L ⊆ Σω is ω-regular if
and only if it is recognisable by a finite ω-semigroup [20, Thm. 7.6]. See [20, Sections 8,9]
respectively for effective translations from Büchi automata to ω-semigroups, and vice versa.
Furthermore, analogous to the finite-word case, there is a notion of the (finite) syntactic
ω-semigroup of an ω-regular language [20, Sec. 11].

A few remarks addressing presentation concerns are in order. A result of Wilke [27]
showed that for finite ω-semigroups M , the infinite product is fully determined by the
function Mf → Mω that maps m to mω [20, Thm. 7.1]. This combinatorial result is proven
through Ramsey’s theorem, and gives a method to construct ω-semigroups through Wilke
algebras. We refer the reader to [20, Sec. 7] for details of how the semigroup structure of Mf

determines an extension into an ω-semigroup through linked pairs.
We use the equivalence of finite ω-semigroups and automata through the following lemma.

▶ Lemma 2. Let M = (Mf , Mω) be a finite ω-semigroup, and x ∈ Mf ∪ Mω. Extend
Mf into a monoid M ′

f by adjoining a distinguished neutral element 1M : for all m ∈ M ′
f ,

1M · m = m · 1M = m. We can construct an automaton Ax over the alphabet M ′
f that accepts

m0m1 · · · ∈ (M ′
f )ω if and only if the infinite product m0m1 · · · (defined as the possibly finite

product of the subsequence mi0mi1 · · · obtained by discarding all 1M terms) equals x.

2.3 Uniformly recurrent words
For a word α ∈ Σω, the set L(α) = {u : u is a factor of α} is called the (factor) language
of α. The factor complexity function pα computes the number of factors of α of a given
length n. For example, if α is Sturmian, then pα(n) = n + 1 for all n (see e.g. [13]).

For an infinite word α and l ≥ 0, denote by Rα(l) the smallest r ∈ N ∪ {∞} such that
every factor of α of length l is a factor of every factor of α of length r. We call Rα the
recurrence function of α. A word α ∈ Σω is said to be uniformly recurrent if Rα(l) ∈ N for
every l ∈ N. That is, every u ∈ Σl either does not occur in α, or occurs infinitely often with
bounded gaps. It is clear from the definition that for uniformly recurrent α, the value of
Rα(l) only depends on L(α). We record the following, which follows by brute enumeration.

▶ Lemma 3. Let α ∈ Σω be uniformly recurrent. Suppose we have access to an oracle that,
given u ∈ Σ∗, checks whether u ∈ L(α). Then we can effectively compute Rα(l).
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Semënov [23] gave an algorithm4 for determining whether a given deterministic automaton A
accepts a given uniformly recurrent word α, which is represented by (A) an oracle computing
α(n) on input n and (B) an oracle computing an upper bound Rα(l) on Rα(l) given l.

▶ Theorem 4 (Semënov). Let A be an automaton and α be a uniformly recurrent word
represented by the oracles (A-B). We can effectively compute M ∈ N such that a state q of A
appears infinitely often in A(α) if and only if it appears in A(α)[M, 2M).

In other words, to check whether A accepts α, we simply need to run A on α for 2M steps,
and observe the states that are visited. See [17, Chap. 3.1] for effective bounds on M , from
which we can deduce the following.

▶ Proposition 5. Let A be an automaton and α be a uniformly recurrent word represented
by the oracles (A-B). We can compute l, M such that for any uniformly recurrent β with
β[0, M) = α[0, M) and Rβ(n) = Rα(n) for all n ≤ l, we have that A accepts α if and only if
it accepts β.

2.4 Ostrowski numeration systems
We recall properties of a numeration system which proves to be particularly convenient
to describe Sturmian words in S-adic terms. Let η ∈ (0, 1) \ Q. The continued fraction
expansion of η is the unique sequence (an)n≥1 of positive integers such that

η =
1

a1 +
1

a2 + · · ·

We write η = [0; a1, a2, . . .]. The convergents (pn/qn)n∈N of η are obtained by truncating the
expansion at the n-th level. The numerators and denominators satisfy the recurrences p0 = 0,
q0 = 1, p1 = 1, q1 = a1, and (pn+2, qn+2) = an+2 · (pn+1, qn+1) + (pn, qn) for all n ≥ 0. The
convergents are the locally best approximants of η: for every n ∈ N, p ∈ Z, and 0 < q < qn,

|qnη − pn| < min
p∈N

|qη − p|

which implies that
∣∣η − pn

qn

∣∣ < minp∈N
∣∣η − p

q

∣∣. The Ostrowski numeration system in base η

is based on the sequence θn = qnη − pn. For any χ ∈ [−η, 1 − η], there exists a sequence
(bn)n≥1 over N such that (i) 0 ≤ b1 < a1, (ii) 0 ≤ bn ≤ an for all n ≥ 2, (iii) for all n, bn = 0
if bn+1 = an+1, and

χ =
∞∑

n=1
bnθn−1.

We refer to (bn)n≥1 as an Ostrowski expansion of χ in base η. Conversely, every (bn)n∈N
satisfying (i-iii) is an Ostrowski expansion of some χ in base η, i.e., the infinite sum converges
to a value in [−η, 1 − η].5 If χ /∈ Z + ηZ or if χ ∈ Z≥1 + ηZ, then χ has a unique Ostrowski
expansion in base η. Otherwise, χ can have two expansions in base η. For more on the
subject, see e.g. [9].

4 Semënov’s result applies to the more general family of effectively almost-periodic words [19].
5 To check this, observe that θn alternates between positive and negative; θ0 = η, θ1 = a1η − 1;

θn+2 = an+2θn+1 + θn.
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3 S-adic words

We now establish basic definitions and facts about S-adicity; see e.g. [4] for more on the
subject. Let Σ be an alphabet and S ⊆ S(Σ) be a possibly infinite set of non-erasing
substitutions. We refer to α ∈ Σ∗ ∪Σω as S-directed if there exists a sequence (σn)n∈N over S

and a sequence of infinite words (α(n))n∈N such that α(0) = α and σn(α(n+1)) = α(n) for all
n ∈ N; note that the previous word is the image of the subsequent one. We say that (σn)n∈N
directs α. A word α ∈ Σ∗ ∪ Σω is called S-generated if there exists a sequence (σn, an)n∈N
over S(Σ) × Σ such that

α = lim
n→∞

σ0 · · · σn(an). (1)

We refer to (σn, an)n∈N as an S-adic expansion of α. For finite or infinite α, whenever (1)
holds we say that (σn, an)n∈N generates α. In both the S-directed and the S-generated
settings (to which we collectively refer as S-adic), (σn)n∈N is called a directive sequence.

▶ Lemma 6. If α ∈ Σ∗ ∪ Σω is generated by s over S(Σ), then it is also directed by s.
Furthermore, every s over S(Σ) directs at least one non-empty word β ∈ Σ+ ∪ Σω.

Proof. We will first prove a slightly more general version of the first statement. Let (an)n∈N
be a sequence of letters and Um = {σm · · · σn(an) : n ≥ m} for all m ∈ N. Suppose α is an
accumulation point of U0, which subsumes the case of α being generated by (σn, an)n∈N. We
will inductively prove the existence of (α(m))m∈N such that α(0) = α, α(m) = σm

(
α(m+1)),

and α(m) is an accumulation point of Um for all m. The base case is immediate.
For the inductive step, suppose we have constructed α(0), . . . , α(m) with the properties

above. Write um,n = σm · · · σn(an), and observe that by the induction hypothesis, α(m) is
the limit of some sequence (σm(um+1,ni))i∈N. By compactness, the sequence (um+1,ni)i∈N
itself has an infinite subsequence (um+1,kj

)j∈N that converges. We choose α(m+1) to be the
limit, which is an accumulation point of Um+1. By the continuity of σm : Σ∗ ∪ Σω → Σ∗ ∪ Σω,

lim
j→∞

σm(um+1,kj
) = σm

(
lim

j→∞
um+1,kj

)
which implies that α(m) = σm(α(m+1)).

To prove the second claim, choose an arbitrary sequence (an)n∈N of letters and let β be
an accumulation point of {σ0 · · · σn(an) : n ∈ N}. Apply the preceding argument. ◀

The converse of the lemma above, however is not true: take s to be the sequence of identity
morphisms. We next study various special classes of S-adic words with which we will work.

▶ Definition 7. A sequence (σn)n∈N over S(Σ) is weakly primitive if for every n there exists
m ≥ n such that σn · · · σm is positive, i.e., for every b, c ∈ Σ, b appears in σn · · · σm(c).

If (σn)n∈N is weakly primitive, then we can compute a sequence (kn)n∈N of increasing integers
with k0 = 0 such that σkn

· · · σkn+1−1 is positive for all k. Consequently, for any sequence of
letters (an)n∈N we have that limn→∞ |σ0 · · · σn(an)| = ∞; this is known as being everywhere
growing. A word directed by a weakly primitive sequence is uniformly recurrent [11].

The directive sequences with which we will work generate and direct a unique word due
to left-properness. The proof of the following lemma is in App. A.

▶ Lemma 8. Let (σn)n∈N ∈ S(Σ)ω be weakly primitive with infinitely many left-proper terms.
Then there exists unique α ∈ Σω such that for any (an)n∈N ∈ Σω, (σn, an)n∈N generates α.

We next illustrate the concepts above through examples.
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3.1 Sturmian and Arnoux-Rauzy words
Let η ∈ (0, 1) \ Q. The characteristic Sturmian word with slope η is defined by

αη(n) = ⌊(n + 2)η⌋ − ⌊(n + 1)η⌋ ∈ {0, 1}

for n ∈ N. For instance, the Fibonacci word has η = 1/ϕ2, where ϕ is the golden ratio.
Characteristic Sturmian words are S-directed for S = {λ0, λ1}. The substitution λi maps i

to i, and the other letter j to ij, i.e., it inserts i to the left.
The word αη is intimately connected to the continued fraction expansion of η. Suppose

η = [0; 1 + a1, a2, . . .]. We then have that αη is the unique word directed by the sequence

λ0, . . . , λ0︸ ︷︷ ︸
a1 times

, λ1, . . . , λ1︸ ︷︷ ︸
a2 times

, λ0, . . . , λ0︸ ︷︷ ︸
a3 times

, λ1, . . . , λ1︸ ︷︷ ︸
a4 times

, . . .

which we denote by sη. For example, 1/ϕ2 has the continued fraction expansion [0; 2, 1, 1, . . .],
and hence the Fibonacci word is directed by (λ0λ1)ω. Observe that λ0, λ1 are left-proper.
Moreover, for every k, m > 0, λk

0λm
1 is positive and hence sη is weakly primitive.

A (general) Sturmian word α of slope η ∈ (0, 1) \ Q and intercept χ ∈ [−η, 1 − η] is given
by one of the following:

α(n) = ⌊(n + 2)η + χ⌋ − ⌊(n + 1)η + χ⌋, for all n (2)
α(n) = ⌈(n + 2)η + χ⌉ − ⌈(n + 1)η + χ⌉, for all n. (3)

Sturmian words are uniformly recurrent, and are equivalently characterised by their factor
complexity p(n) = n + 1, which is the lowest among non-periodic words. A Sturmian word α

with slope η and intercept χ satisfies L(α) = L(αη). That is, the language of a Sturmian
word only depends on its slope.

Sturmian words are not necessarily S-adic for S defined above. However, they are S-adic
for S = {λ0, λ1, ρ0, ρ1} where the substitution ρi inserts i to the right, i.e, maps i to i and
j to ji. Let α be a Sturmian word with slope η = [0; a1 + 1, a2, . . .] and intercept χ. Then
there exists (by [7, Prop. 2.7, also see remark after Thm. 2.10]) an Ostrowski expansion
(bn)n∈N of χ in base η such that α is directed by a sequence (τ)n∈N where

τn = λ
b2n+1
0 ρ

a2n+1−b2n+1
0 λ

b2n+2
1 ρ

a2n+2−b2n+2
1 . (4)

Conversely, the rules of Ostrowski expansion guarantee that each (τn)n∈N obtained from the
expansions (an)n∈N and (bn)n∈N as above is weakly primitive and directs a Sturmian word.
Observe that we can unpack each τn to obtain a bona fide directive sequence over S, and
every morphism in S is left-proper.

In summary, Sturmian words can characterised as the set of all α generated by some
weakly primitive (σn)n∈N ∈ {λ0, λ1, ρ0, ρ1} containing infinitely many left-proper terms.
Arnoux-Rauzy words generalise Sturmian words to larger alphabets. Let Σ = {0, . . . , d − 1}.
For distinct i, j ∈ Σ, define λi(j) = ij and ρi(j) = ji, and for i = j ∈ Σ, let λi(j) = λj(i) = i.
Observe that each λi is left-proper. Then a word α ∈ Σω is Arnoux-Rauzy if and only
if it is generated by a weakly primitive (σn)n∈N ∈ {λ0, . . . , λd−1, ρ0, . . . , ρd−1} containing
infinitely many left-proper terms (see, e.g., [15, Sec. 2.3, Thm. 4.12, Sec. 5]). Arnoux-Rauzy
words have factor complexity p(n) = (n − 1)d + 1, but this is not a characterisation for
d > 2. Observe that Sturmian words are precisely the Arnoux-Rauzy words over a two-letter
alphabet. Other S-adic generalisations of Sturmian words include episturmian words [15]
and dendric shifts [3, 14].
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4 Structure theorems for S-adic words

Let s be a directive sequence over S(Σ) for an alphabet Σ. In this section we will show
that any word directed by s can be written as a product of congenial words generated by s.
Congenial expansions are one of the main novelties of this paper, and form the combinatorial
cornerstone of our analysis of the automaton acceptance problem for S-adic words.

▶ Definition 9. Let Σ be an alphabet. A sequence ((σn, an))n∈N over S(Σ) × Σ is con-
genial if σn+1(an+1) begins with an for all n. A word α ∈ Σ+ ∪ Σω is s-congenial for a
directive sequence s if α = limn→∞ σ0 · · · σn(an) for a congenial sequence ((σn, an))n∈N that
augments s.

The most desirable property of a congenial sequence (σn, an)n∈N is that limn→∞ σ0 · · · σn(an)
is guaranteed to exist, and has every σ0 · · · σn(an) as a prefix. The following lemma captures
this property, and is proven via a straightforward induction.

▶ Lemma 10. Let ((σn, an))n∈N be congenial, and for n ≥ 1, vn ∈ Σ∗ be such that σn(an) =
an−1vn. For all n, σ0 · · · σn(an) = σ0(a0) · σ0(v1) · σ0σ1(v2) · · · (σ0 · · · σn−1(vn))

For a directive sequence s, denote by congenialss the set of all s-congenial α ∈ Σω. We
next show that this set is finite.

▶ Lemma 11. Let Σ be an alphabet and s = (σn)n∈N be a directive sequence over S(Σ).
There exist at least one and at most |Σ| congenial expansions of the form (σn, an)n∈N, and
hence 1 ≤ |congenialss| ≤ |Σ|.

Proof. By Lem. 6, there exists (α(n))n∈N over Σω such that σ0 · · · σn(α(n+1)) = α(0) for
all n. Let an be the first letter of α(n). We have that (σn, an+1) is congenial, and hence
|congenialss| ≥ 1.

Now suppose there exist m ≥ |Σ| + 1 congenial sequences (σn, a
(i)
n )n∈N. By a pigeonhole

argument, there must exist i ̸= j such that a
(i)
n = a

(j)
n for infinitely many n. From congeniality

it follows that a
(i)
n = a

(j)
n for all n. ◀

Congenial words constitute the building blocks of directed words. The “if” part of the
following lemma follows by definition; the “only if” part holds because a directed word can
naturally be factorised into a congenial prefix and a directed suffix (if the former is finite).

▶ Lemma 12. Let Σ be an alphabet and s = (σn)n∈N be a directive sequence over S(Σ). A
word α ∈ Σ+ ∪ Σω is directed by s if and only if it can be expressed as a (possibly infinite)
concatenation u0u1 · · · of s-congenial words.

Proof. Suppose α = u0u1 · · · , where ui ∈ congenialss for all i. Let (σn, a
(i)
n )n∈N be a

congenial sequence generating ui, and u
(n)
i = limk→∞ σn · · · σk(a(i)

k ) for all i. We have that
u

(i)
n = σn(u(i)

n+1) for all n. It remains to define α(n) = u
(n)
0 u

(n)
1 · · · . Then α(0) = α and

α
(i)
n = σn(α(i)

n+1) for all n.
Now suppose α is s-directed, and let (α(n))n∈N be the witnessing sequence of words

with α(0) = α. Write an for the first letter of α(n). We construct the desired factorisation
inductively. Let v be the word defined by the congenial sequence (σn, an+1)n∈N. By the
choice of (an)n∈N, v is a prefix of α. If v = α, then we are done. Otherwise, v must be finite.
Let (vn)n∈N be the unique sequence of finite words such that v0 = v, vn is a prefix of α(n) for
all n, and σn(vn+1) = vn for all n. Write α(n) = vnγ(n) for all n. Because σn(α(n+1)) = α(n)

for all n and σn(vn+1) = vn, we have that σn(γ(n+1)) = γ(n). That is, γ = γ(0) is a suffix of
α directed by s. Set u0 = v, and repeat the process on γ. ◀
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If s is weakly primitive, then have the following strengthening of Lem 12.

▶ Lemma 13. Suppose s = (σn)n∈N is weakly primitive and directs α ∈ Σω. Then α has a
congenial expansion (σn, an)n∈N.

Proof. Let (α(n))n∈N be such that α(0) = α and σn(α(n+1)) = α(n), and an be the first
letter of α(n+1). Then (σn, an)n∈N is congenial, σ0 · · · σn(an) is a prefix of α for all n, and
limn→∞ σ0 · · · σn = ∞ by the growth assumption. Therefore, (σn, an)n∈N generates α. ◀

Combining lemmas 6 and 13 we obtain the following.

▶ Lemma 14. Let s be a weakly primitive directive sequence. A word α is directed by s if
and only if it is congenially generated by s.

5 Equivalence of substitutions modulo a semigroup

The motivation behind the semigroup-based approach to the language-membership problem
is that even though there are infinitely many substitutions in S(Σ), from the perspective of
a finite ω-semigroup ML recognising an ω-regular language L ∈ Σω, they can be divided into
finitely many equivalence classes.

Let L ⊆ Σω be an ω-regular language, and let it be recognised by a morphism hL into a
finite ω-semigroup ML = (ML,f , ML,ω), e.g., the morphism into the syntactic ω-semigroup
as defined in [20, Sec. 11]. Observe that an ω-semigroup morphism from Σ∞ into M is
completely determined by the images of each letter in ML,f . Since ML,f is finite, there are
only finitely many possible morphisms. We denote the set of these morphisms by morphismsL.
We make a small technical adaptation, and interpret these as monoid morphisms, i.e., we
adjoin a fresh neutral element 1ML

to ML, and assign h(ε) = 1ML
for each h.

We define an equivalence relation on the set of non-erasing substitutions σ : Σ∗ → Σ∗.
Let segmentsσ be the function that takes a letter a ∈ Σ and h ∈ morphismsL, and returns a
finite sequence of pairs from Σ × ML, determined as follows. Write

σ(a) = b1v1 · · · bdvd

where b1, . . . , bd are distinct letters and vi ∈ {b1, . . . , bi}∗ for all 1 ≤ i ≤ d. I.e., we consider
the factorisation of σ(a) into segments based on the first occurrence of each letter. Then

segmentsσ(a, h) = ⟨(b1, h(v1)), . . . , (bd, h(vd))⟩.

Note that there are only finitely many possibilities for segmentsσ. For σ, µ ∈ S(Σ), define

σ ≡L µ ⇔ segmentsσ = segmentsµ.

We denote the class of σ by [σ]L, and the finite set of the equivalence classes by ΞL. We
next show how to effectively provide representatives for the equivalence classes; see App. A
for the proof.

▶ Lemma 15. Given an ω-regular language L, we can compute morphisms σ1, . . . , σm such
that [σi]L ̸= [σj ]L for all i ̸= j and ΞL = {[σi]L : 1 ≤ i ≤ m}.

For technical convenience, we define the following auxiliary functions that can be derived
from segmentsσ; the first four of them are independent of L.

(a) expandingσ records for each letter a whether |σ(a)| > 1. It evaluates to false if and only
if segmentsσ(a, h) = ⟨(b, 1ML

)⟩ for all h.
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(b) introducesσ maps each letter to a finite sequence of pairs of letters with Boolean flags: if
σ(a) = b1v1 · · · bdvd when factorised as in the definition of segmentsσ, then introducesσ(a)
is ⟨(b1, f1), . . . , (bd, fd)⟩ where fi = 1 if and only if vi ̸= ε.

(c) headσ maps each letter a to the first letter in σ(a).
(d) tailσ takes as input a letter a and a morphism h. Write σ(a) = headσ(a) · v. We define

tailσ(a, h) = h(v).
(e) composeσ takes h ∈ morphismsL → morphismsL and returns h ◦ σ.

We next argue that composition of morphisms can be defined on equivalence classes.
Let σ, µ : Σ∗ → Σ∗ be non-erasing. We show how to determine segmentsσ◦µ(a, h) using only
segmentsµ and segmentsσ. Suppose µ(a) = b1v1 · · · bmvm, where bi ∈ Σ and vi ∈ {b1, . . . , bi}∗

for all i. Then

σ(µ(a)) = σ(b1)σ(v1) · · · σ(bm)σ(vm)

and each letter of σ(vi) will have already appeared in one of σ(b1), . . . , σ(bi). Write
segmentsσ(bi, h) = ⟨(ci,1, h(wi,1)), . . . , (ci,ki

, h(wi,ki
))⟩. Then σ(µ(a)) is equal to

c1,1w1,1 · · · c1,k1w1,k1σ(v1) · · · cm,1wm,1 · · · cm,km
wm,km

σ(vm).

Write ti = wi,ki
σ(vi). Observe that each letter of wi,j appears as a factor ce,l before wi,j

in the factorisation above; the same applies to every ti. To compute segmentsσ◦µ(a, h) we
begin with the finite sequence

(c1,1, h(w1,1)), . . . , (c1,k1−1, h(w1,k1−1)), (c1,k1 , h(t1)) · · ·
(cm,1, h(wm,1)), . . . , (cm,km−1, h(wm,km−1)), (cm,km

, h(tm)).

Note that the above can be effectively computed from segmentsσ and segmentsµ as h(ti) =
h(wi,ki

) h(σ(vi)) and the two factors can be gleaned from, respectively, segmentsσ(bi, h)
and segmentsµ(a, composeσ(h)). Rename the indices in the sequence above to obtain
⟨(c1, h(w1), . . . , (cM , h(wm)⟩ where ci ∈ Σ and wi ∈ Σ∗ for all i. Recall that wi ∈ {c1, . . . , ci}∗

for all i. But it is possible that ci = cj for some i, j. To eliminate these, we repeat the following
process for as long as possible. Find the smallest j such that ci = cj for some i < j. Replace
the two consecutive terms (cj−1, h(wj−1), (cj , h(wj)) with (cj−1, h(wj−1) h(cj) h(wj)). In the
end we are left with segmentsσ◦µ(a, h).

Observe that segmentsσ only depends on ξ := [σ]L; we can thus index the auxillary
functions (a-e) above by the equivalence class ξ. To summarise, we have the following.

▶ Lemma 16. The set ΞL is a finite monoid with the binary operation [σ]L · [µ]L = [σ ◦ µ]L
and the identity element [id]L, where id(w) = w for all w ∈ Σ∗.

Proof. The set of substitutions is a monoid with composition being the binary operation.
The map from substitutions to their equivalence classes respects the binary operation, by
construction. Using this fact, it is straightforward to check that the binary operation on
equivalence classes is associative, and that [id]L is indeed the identity element. ◀

Let (σn)n∈I be a sequence over S(Σ), ξn = [σn]L for all n, and (an)n∈I be a sequence of
letters from Σ, where I can be finite or infinite. We define traceL((σn)n∈I) = (ξn)n∈I and
traceL((σn, an)n∈I) = (ξn, an)n∈I . We extend the definition of [·]L to finite sequences in the
natural way: if I is finite, then [(σn)n∈I ]L is the product

∏
n∈I ξn ∈ ΞL. We have that for

any infinite word α and substitution σ, whether σ(α) ∈ L can be determined from [σ]L.
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▶ Lemma 17. Let L ⊆ Σω be an ω-regular language and α ∈ Σω. There exists Φ ⊆ ΞL such
that for any σ : Σ∗ → Σ∗, σ(α) ∈ L if and only if [σ]A ∈ Φ. Furthermore, Φ can be effectively
computed if we can compute h(α) for all h ∈ morphismsL.

Proof. Recall [20, Thm. 7.6] that we have a set G ⊆ ML,ω such that for all α ∈ Σω, α ∈ L

if and only if hL(α) ∈ G. We now view the substitution σ as an ω-semigroup morphism:

hL(σ(α)) = hL ◦ σ(α) = composeσ(hL)(α).

We thus define Φ = {ξ ∈ ΞL : composeξ(hL)(α) ∈ G}. The effectiveness claim follows from
the fact that composeξ(hL) ∈ morphismsL for all ξ. ◀

6 Morphic words in a given language

We shall now use the machinery developed in Sec. 5 to characterise the set of morphic words
in a given ω-regular language L ⊆ Σω, thus generalising the main result of [10]. A word
α ∈ Σω is substitutive if it is a fixed point of a non-trivial substitution, i.e., if there exists
σ ∈ S(Σ) not the identity such that σ(α) = α. A word α ∈ Σω is morphic if it is of the
form π(α) for π ∈ S(Σ) and α a substitutive word. For u ∈ Σ∗ and substitutions σ, π, define
σω(u) = limn→∞ σn(u) and π ◦ σω(u) = π(σω(u)). We say that α ∈ Σω is constructibly
morphic if α = π◦σω(u) for substitutions σ, π and u ∈ Σ∗. For such α, given an automaton A,
we will show that the respective equivalence classes ξ, ζ ∈ ΞL of substitutions σ, π determine:

Whether the substitution σ has a fixed point in L (Thm. 22).
A regular language L(ξ, ζ) ⊆ Σ+ such that π ◦ σω(u) is in L if and only if u ∈ L(ξ, ζ)
(Thm. 21).

Before we proceed to state our key properties, we remark that we work with Σ∞ ∪ {⊥}. For
the sake of brevity, we (syntactically) allow infinite words to be concatenated, i.e., for α ∈ Σω

and β ∈ Σ∞, the syntactic concatenation αβ equals α. Furthermore, we syntactically allow
for ⊥ to be concatenated as a word would: for any word u, ⊥u = ⊥, the concatenation u⊥
is ⊥ for finite u, and is u for infinite u.

▶ Lemma 18. Let Σ be an alphabet and σ be a substitution. The following properties hold.
Saturation For u ∈ Σ∗, we have that σω(u) = σω(σ(u)).
Distributivity For u, v ∈ Σ∗, σω(uv) = σω(u) · σω(v).
Left-expansion For a ∈ Σ, u ∈ Σ+, v ∈ Σ∗,

if σω(a) = u · σω(a) · σω(v), then σω(a) = uω.
Right-expansion For a ∈ Σ, u ∈ Σ∗, if σ(a) = au, then

σω(a) = a · u · σ(u) · · · σn(u) · · · .
Cycle of Contradiction Let a0, . . . , ap−1, p > 1 be distinct letters such that headσp(a0) = a0,

and for any r ∈ {1, . . . , p − 1}, headσr (a0) = ar. We have that
σω(a0) = · · · = σω(ap−1) = ⊥.

Terminal Letters If, for a letter a, σω(a) = u ∈ Σ+, then for all n ≥ |Σ|, σn(a) = u.

Proof. See App. A. ◀

The following result, along with distributivity, implies that whether σω(u) for a finite
word u is an infinite word accepted by A is determined by the equivalence class [σ]L; this is
the main technical novelty of this section.

▶ Theorem 19. Let L ⊆ Σω be an ω-regular language. For any h ∈ morphismsL, substitutions
σ, τ with σ ≡L τ , and letter a, we have that h ◦ σω(a) = h ◦ τω(a). Moreover, h ◦ σω(a) can
be computed given only the equivalence class ξ ∈ ΞL of σ, τ along with the values of h, a.
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Proof. By Lem. 18, we have a dynamic programming algorithm to compute h ◦ σω(a) in a
“depth-first” manner. We shall show that this algorithm only uses [σ]L = ξ.

Indeed, assume that σ(b) = c1v1 · · · ckvk (where the factorisation is based on the first
occurrence of each letter; we get c1, . . . , ck from introducesξ). By Saturation, we have that

h ◦ σω(b) = h ◦ σω(c1) · h ◦ σω(v1) · · · h ◦ σω(ck) · h ◦ σω(vk).

We observe that the terms h ◦ σω(vi) will affect the result only if all h ◦ σω(cj) for j ≤ i are
elements of ML,f . In this case, σω(vi) will also be a finite word, and by the Terminal Letters
property, be σ|Σ|(vi). We denote h ◦ σ|Σ| by g; thus in this case, we have h ◦ σω(vi) = g(vi).
We can rewrite

h ◦ σω(b) = h ◦ σω(c1) · g(v1) · · · h ◦ σω(ck) · g(vk). (5)

The elements g(v1), . . . , g(vk) can be obtained from segmentsξ(b, g). If c1 = b, we are in the
simpler case of Right-expansion where σ(b) = bu, and have that

h ◦ σω(b) = h(b) · h(u) · h ◦ σ(u) · h ◦ σ2(u) · · · .

The first two terms are easily obtained through tailξ, and h ◦ σn(u) = tailξ(b, composeξn(h)).
Since the sequence of monoid elements ξn is effectively ultimately periodic, so is the sequence
of factors in the above infinite product, allowing us to compute it.

If c1 ̸= b, we first check that there is no r such that σr(c1) = b: this can be done with
access to headξr for r ≤ |Σ|. If this check fails, we have a Cycle of Contradiction, and have
that h ◦ σω(b) = ⊥.

We now evaluate expansion (5). Write m0 = 1ML
, and

mi = h ◦ σω(c1) · g(v1) · · · h ◦ σω(ck) · g(vi).

Clearly, mi+1 = mi · h ◦ σω(ci+1) · g(vi+1), and

h ◦ σω(b) = mi · h ◦ σω(ci+1) · g(vi+1) · · · h ◦ σω(ck) · g(vk).

In particular when mi /∈ ML,f for some i, then h ◦ σω(b) = mi. For each i, if ci ̸= b, we
evaluate h ◦ σω(ci) (we make a recursive call if it has not been evaluated before, otherwise
we look up the memoized value). Otherwise, ci = b and we are in the case of Left-expansion,
and get that h ◦ σω(b) = mω

i−1. In any case, we will eventually compute mk = h ◦ σω(b).
The result follows by applying the above depth-first routine to compute h ◦ σω(a). ◀

As a corollary, we obtain that whether a substitution π, when applied to the word
obtained by iterating σ infinitely on u, produces a word in L, is also determined by the
equivalence classes [σ]L and [π]L: indeed, acceptance only depends on hL ◦ π ◦ σω(u), which
is the same as h = compose[π]L

(hL) applied to σω(u).

▶ Corollary 20. Let L ⊆ Σω be an ω-regular language. For any letter a and h ∈ morphismsL

we can compute h ◦ π ◦ σω(a) given only h, a, [σ]L, [π]L.

We thus arrive at the following.

▶ Theorem 21. Let L ⊆ Σω be an ω-regular language and σ, π be substitutions with respective
equivalence classes ξ, ζ ∈ ΞL. We can compute a regular language L(ξ, ζ) ⊆ Σ+ such that
π ◦ σω(u) ∈ L if and only if u ∈ L(ξ, ζ).
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Proof. We construct a deterministic finite-word automaton recognising L(ξ, ζ). The set of
states are the elements of ML,f ∪ ML,ω, the initial state is 1ML

, the set of accepting states
is G (the semigroup elements whose preimages comprise L), and the transition function maps
(m, a) to m · (hL ◦ π ◦ σω)(a). The latter is effective by Cor. 20. ◀

Finally, whether σ has a fixed point in L is effectively determined by [σ]L.

▶ Theorem 22. Let L ⊆ Σω be an ω-regular language and σ be a substitution. Given [σ]L
and h ∈ morphismsL, we can compute the set {h(α) : σ(α) = α} ⊆ ML.

Proof. We observe that any fixed point of σ must be a concatenation of words σω(a),
where σ(a) = au for u ∈ Σ∗. Write A for the set of all such letters a, which can be
extrracted from introducesσ. The required set is then the sub-ω-semigroup of ML generated
by {h ◦ σω(a) : a ∈ A}, whose elements in turn can be computed using Thm. 19. ◀

7 S-adic words in a given language

We now present our main results, i.e., solutions to the language membership problem for
S-adic words. In this section, let L ⊆ Σω be an ω-regular language recognised by a morphism
hL into a finite ω-semigroup ML, and let H ⊆ ML,ω be the elements whose preimages
constitute L. Recall ΞL the set of equivalence classes of substitutions modulo ML, as defined
in Sec. 5. We will first prove that for congenial ŝ over S(Σ) × Σ, defining a word accepted by
A is a property of traceL(ŝ), and the set of all such traces is ω-regular.

▶ Theorem 23 (Main Result for Generated Words). Let L ⊆ Σω be an ω-regular language.
We can compute an automaton B over ΞL × Σ such that for all infinite sequences ŝ over
S(Σ) × Σ, B accepts traceL(ŝ) if and only if ŝ is congenial and generates a word in L.

Proof. The automaton B accepts ŝ ∈ (ΞL×Σ)ω if and only if ŝ is accepted by Bx (constructed
in Lem. 24 below; see App. A for the proof) for some x ∈ H. Intuitively, Bx, upon reading ŝ,
checks that the expansion is congenial, and uses the property to map consecutive factors un

of the generated word to hL(un) ∈ ML,f ∪ {1ML
}. It then simulates the run of Ax (from

Lem. 2) on this stream of images. ◀

▶ Lemma 24. Let x ∈ ML,f ∪ ML,ω. We can construct an automaton Bx over ΞL × Σ
such that for all infinite sequences ŝ over S(Σ) × Σ, Bx accepts traceL(ŝ) if and only if ŝ is
congenial and hL(α) = x, where α is the word generated by ŝ.

When S is finite, for every individual σ ∈ S(Σ) we can compute the equivalence class [σ]L,
which yields the following.

▶ Corollary 25. Let S ⊆ S(Σ) be finite. We can compute an automaton B over S × Σ such
that B accepts ŝ if and only if ŝ is congenial and generates a word in L.

We next consider S-directed words, which are products of congenial words by Lem. 12.

▶ Theorem 26 (Main Result for Directed Words). Let L ⊆ Σω be an ω-regular language. We
can construct an automaton B over ΞL such that for all s ∈ S(Σ)ω, B accepts traceL(s) if
and only if s directs some α ∈ L.

Proof. Denote the image of congenialss under hL by Xs ⊂ ML,f ∪ML,ω. Recall from Lem. 12
that directed words are obtained by concatenating congenial words. To prove Thm. 26,
we need to recognise the set of all traces for which the sub-ω-semigroup generated by Xs
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intersects the accepting set H. We can precompute a set X of sets X that generate sub-
ω-semigroups intersecting H. Our automaton B needs to check that Xs contains at least
one such set X. We denote by Cx the projection of Bx from Thm. 24 to ΞL, and observe:
s ∈ L(B) if and only if

∨
X∈X

∧
x∈X x ∈ L(Cx). ◀

▶ Corollary 27. Let S ⊆ S(Σ) be finite. We can compute an automaton B over S such that
B accepts s if and only if s directs a word in L.

The corollary above is proven in the same way as Cor. 25. We can apply the former to
Arnoux-Rauzy words (which subsume Sturmian words) over the alphabet Σ = {0, . . . , d − 1}.
Let S = {λ0, . . . , λd−1, ρ0, . . . , ρd−1}. Recall that a word α is Arnoux-Rauzy if and only if it
is directed by a (i) weakly primitive s ∈ Sω which (ii) contains infinitely many left-proper
terms; by Lem. 8, such directive sequences direct a unique word, which is infinite. By
inspection, s ∈ Sω is weakly primitive if and only if for every 0 ≤ i < d, either ρi or λi occurs
infinitely often. Hence the requirements (i-ii) can be checked by an automaton, and from
Cor. 27 we obtain the following.

▶ Theorem 28 (Main Result for Arnoux-Rauzy words). Let Σ = {0, . . . , d − 1}, L ⊆ Σω be
an ω-regular language, and S be the finite set of morphisms generating the Arnoux-Rauzy
words over Σ as described above. We can compute an automaton C that accepts s ∈ Sω if
and only if s is weakly primitive, contains infinitely many left-proper terms, and the unique
Arnoux-Rauzy word directed by s is in L.

8 Partial Quotients

In this section, we refine our main results presented in Sec. 7. For characteristic Sturmian
words, in particular, we will show that whether a deterministic parity automaton A accepts
the characteristic Sturmian word αη with slope η only depends on the first N(A) terms in
the continued fraction expansion of η, where N is independent of the slope η.

Fix a (deterministic) automaton A, a class of words W ⊆ Σω, and S ⊆ S(Σ) such that
1. α ∈ W if and only if α is directed by some weakly primitive s over Sω, and
2. there exists an effectively computable function p such that pα(n) = p(n) for all α ∈ W

and n ∈ N, where pα(n) is the number of distinct fators of α of length n.
By 1, every α ∈ W is uniformly recurrent. Characteristic Sturmian, Sturmian, and d-
letter Arnoux-Rauzy words are captured, respectively, with S = {λ0, ρ0}, p(n) = n + 1;
S = {λ0, ρ0, λ1, ρ1}, p(n) = n + 1; and S = {λ0, . . . , λd−1, ρ0, . . . , ρd−1}, p(n) = n(d − 1) + 1.

The main idea is that every α ∈ W has a prefix u that is p-saturated with respect to A,
i.e., any uniformly recurrent extension β of u with factor complexity p agrees with α upon
acceptance by A (Lem. 29). The proof (see App. A) involves a careful consideration of
Semënov’s algorithm for deciding whether a given automaton accepts a given uniformly
recurrent word.

▶ Lemma 29. Let α ∈ W with effectively computable letters. We can compute N such that
any β ∈ W with β[0, N) = α[0, N) is accepted by A if and only if α is accepted by A.

Given a weakly primitive and congenial expansion (σn, an)n∈N of α, we can compute an
increasing sequence (kn)n∈N with k0 = 0 such that, writing ln = kn+1−1, τn = σkn

· · · σln
and

bn = aln
, each τn is positive, all strict prefixes of the composition σkn

· · · σln
are not positive,

and (τn, bn)n∈N is also a congenial expansion of α. We refer to (τn, bn)n∈N as the sequence
of partial quotients of (σn, an)n∈N. By construction, the sequence of partial quotients is
weakly primitive. The main result of this section is that, for the class W, acceptance by A
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is determined by a few initial partial quotients; for reasons of space, we delegate the proof,
which combines algebraic, combinatorial, and topological reasoning, to the appendix.

▶ Theorem 30. We can compute N with the following property. Let α, α′ be in W with
congenial S-adic expansions (τn, an)n∈N, (τ ′

n, a′
n)n∈N and partial quotients (πn, bn)n∈N and

(π′
n, b′

n)n∈N, respectively. If πn ≡L π′
n and bn = b′

n for all n ≤ N , then A accepts α if and
only if it accepts α′.

Let us illustrate this result on Sturmian words. Given an automaton A, apply Thm. 30 with
S = {λ0, λ1, ρ0, ρ1} and p(n) = n + 1 to compute N . Let η ∈ (0, 1) \ Q, χ ∈ [−η, 1 − η],
[0; a1 +1, a2, . . .] be the continued fraction expansion of η, (bn)n∈N be an Ostrowski expansion
of χ in base η, and α be the corresponding Sturmian word with slope η and intercept χ.
Recall that α is directed (and uniquely generated; see Lem. 8) by the sequence

(σn)n∈N = ⟨λb1
0 , ρc1

0 , λb2
1 , ρc2

1 , λb3
0 , ρc3

0 , λb4
1 , ρc4

1 . . .⟩

where ci = ai − bi. By the rules of Ostrowski expansion, at least one of cn, cn+1 is non-zero
for all n. Moreover, every composition of morphisms from {λ0, λ1, ρ0, ρ1} that includes two
morphisms with differing indices is positive. Since at least one of bn, cn is non-zero for all
n > 1 (we could, however, have a1 = b1 = c1 = 0), we have that for every n, σn · · · σn+5 is
positive. Applying Thm. 30, whether α is accepted by A can be determined by looking at
the first 6N digits of the expansions of η and χ, since these are guaranteed to generate at
least the first N partial quotients of the unique S-adic expansion of α.
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A Omitted proofs

Proof of Lem. 8. Let (kn)n∈N be an increasing sequence over N such that k0 = 0 and σkn

is left-proper for n > 0. Further let bn ∈ Σ be such that all images of σkn begin with bn.
Then α = limn→∞ σ0 · · · σkn−1(an). This limit exists and is infinite because the terms of the
sequence are strict prefixes of one another. (In fact, in the parlance of Sec. 4, the expansion
(σkn

· · · σkn+1−1, akn+1)n∈N is congenial.) Now take (σn, an)n∈N, where (an)n∈N is arbitrary.
Then σ0 · · · σn(an) must agree with α on the first |σ0 · · · σkm−1(am)| letters, where km is
maximal with the property that km ≤ n. Since km becomes arbitrarily large as n → ∞, we
have that limn→∞ σ0 · · · σn(an) = α. ◀

Proof of Lem. 15. We simply iterate over each syntactic possibility for segmentsσ, and check
if it is realised by a non-erasing substitution. In order to do so, for each letter a, we will
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find a word wa such that assigning σ(a) = wa is consistent with segmentsσ(a, h) for all h.
For a ∈ Σ and h ∈ morphismsL under consideration, let the purported segmentsσ(a, h) =
⟨(b1, x1), . . . , (bk, xk)⟩ with k ≥ 1 such that bi ̸= bj for all i ̸= j and xi ∈ MA, bi ∈ Σ for all i.
We can compute regular languages L1, . . . , Lk ⊆ Σ∗ such that for all i and w ∈ Σ∗, w ∈ Li if
and only if h(wi) = xi and wi ∈ {1, . . . , bi}∗. Denote La,h = b1L1 · · · bkLk.

We can effectively check whether La =
⋂

h∈morphismsL
La,h is non-empty, and if yes,

effectively compute wa ∈ La. Such a word can be computed as an image for every letter
(if and) only if the purported segmentsσ is indeed realisable by assigning each σ(a) to the
corresponding wa. ◀

Proof of Lem. 18.
Saturation. The sequences (σn(a))n and (σn+1(a))n+1 have the same limit.
Distributivity. We have that for all n, σn(uv) = σn(u)σn(v). If σω(u) = µ ∈ Σ∗,

then for all large n, σn(uv) = µ · σn(v). Taking the limit, we get σω(uv) = µ · σω(v). If
σω(u) ∈ Σω, then for every position j, there exists N such that for all n ≥ N , |σn(u)| > j. In
other words, every position j is eventually part of σn(u). Thus, σω(uv) = σω(u). However,
if β ∈ Σω, then βµ = β for all µ ∈ Σ∞. If σω(u) = ⊥, there is some position j such that
the letter σn(u)(j) fluctuates with n. This means that the limit of σn(u)σn(v) must also be
mapped to ⊥.

Left-expansion. Follows by repeatedly unrolling the equality.
Right-expansion. Follows by repeatedly applying σ.
Cycle of Contradiction. The limit must be ⊥ as the first letter of σn(ar) keeps

alternating between a0, . . . , ap−1.
Terminal Letters. We find the set A of letters a such that σω(a) = u ∈ Σ+ by

saturation. The key idea is that if σω(a) converges within n iterations, then σω(σ(a)) must
converge within n − 1 iterations, i.e., for every letter b in σ(a), σω(b) must converge within
n − 1 iterations.

We start with the set A0 of letters a0 such that σ(a0) = a0. We construct An+1 as the
union of An with the set of letters an+1 such that σ(an+1) only contains letters from An.
This construction will saturate within |Σ| steps. The invariant is that Aj is the set of a such
that σω(a) converges within j iterations. We conclude that since for n ≥ |Σ|, An = A|Σ|, if
σω(a) converges in n steps then it must have already converged within |Σ| steps. ◀

Proof of Lem. 24. Recall that a sequence s = (σn, an)n∈N over ΞL × Σ is congenial if and
only if headξn

(an) = an−1 for all n ≥ 1, where ξn = [σn]L. This property depends only on
traceL(s). The automaton Bx, first and foremost, checks the condition above for all n ≥ 1,
and permanently transitions into a rejecting state if it observes violating ξn, an, an−1.

Now suppose s = (σn, an)n∈N is congenial, and define ξn as above. As shown in Lem. 10,

σ0 · · · σn(an) = σ0(a0) · σ0(v1) · σ0σ1(v2) · · · (σ0 · · · σn−1(vn))

for all n, where vn satisfies σn(an) = an−1vn. Let u0 = σ0(a0) and un = σ0 · · · σn−1(vn) for
n ≥ 1. By the properties of infinite products in ML (see Sec. 2.2) we have that hL(α) = x if
and only if

∏∞
n=0 hL(un) = x. The automaton Bx simulates the run of the automaton Ax of

Lem. 2 on the sequence (hL(un))n∈N. It remains to show how the automaton keeps track of
hL(un) as it reads (ξn, an)n∈N. We have that

hL(u0) = (composeξ0(hL))(a0),
hL(un) = tailξn

(an, composeξ0···ξn−1(hL))
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for n ≥ 1. The automaton Bx keeps track of one piece of information ξ ∈ ΞL, in addition to
the state required for simulating a run of Ax on (hL(un))n∈N. Before reading (ξn, an) the
value of ξ is ξ0 · · · ξn−1, where the empty product (corresponding to the initial value of ξ) is
the identity element of ΞL. Upon reading (ξn, an), the automaton Bx first computes hL(un),
in which the value of ξ is used, then feeds the computed value to Ax, and finally updates ξ

to ξ · ξn. Finally, Bx accepts (σn, an)n∈N if and only if Ax accepts (hL(un))n∈N. ◀

Proof of Lem. 29. Since we have access to the factor complexity function of α (and β), we
can evaluate Rα(n) for all n: given n, enumerate prefixes α(0, L) until finding M such that
(i) γ[0, L) contains pα(M) distinct factors of length M , and (ii) all of these pα(M) factors
contain pα(n) distinct factors of length n. Then M = Rα(n).

Applying Prop. 5, we obtain N1 and an ℓ such that if α[0, N1) = β[0, N1) and Rα(n) =
Rβ(n) for n ≤ ℓ, then α and β agree upon acceptance by A. By the above paragraph, we
can compute N2 such that if α[0, N2) = β[0, N2), then Rα(n) = Rβ(n) for n ≤ ℓ. It remains
to take N = max(N1, N2). ◀

Proof of Thm. 30. Let P be the set of all positive σ1 · · · σr such that σi ∈ S for all i and
σ1 · · · σi is not positive for all i < r. Construct finite Π ⊆ P such that {[π]L : π ∈ P} =
{[π]L : π ∈ Π}, and let Ω be the set of all congenial (πn, bn)n∈N over Π × Σ. Because
congeniality is a local condition, Ω is a compact subset of (Π × Σ)ω. Next, consider α

generated by some ŝ = (πn, bn)n∈N ∈ Ω. By Lem. 29 there exists M such that α[0, M) is
p-saturated. Write ΩM for the set of all ŝ ∈ Ω whose first M terms generate a p-saturated
finite word, observing that each ΩM is open. From Lem. 29 it follows that {ΩM : M ∈ N} is
an open cover of Ω, which, by compactness, admits a finite sub-cover. That is, there exists N

(which we can be effectively computed by enumeration) such that for every (πn, bn)n∈N ∈ Ω,
(πn, bn)N

n=0 generates a finite word that is p-saturated.
Now consider α ∈ W with a weakly primitive and congenial S-adic expansion (µn, an)n∈N

and partial quotient sequence ŝ := (τn, bn)n∈N. Let (πn)n∈N over Π be such that τn ≡L πn

for all n, and observe that t̂ := (πn, bn)n∈N is also congenial. Let β be the word generated
by t̂. By Thm. 24, A accepts α if and only if it accepts β. In particular, acceptance by A
only depends on the trace ([τn]A, bn)n∈N. By the earlier argument, whether A accepts β only
depends on ([πn]L, bn)n∈N. Combining the argument of p-saturation, it follows that whether
A accepts α only depends on ([τn]L, bn)N

n=0. ◀
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